Symmetries in Lagrangian Mechanics

AI Thread Summary
The discussion centers on the concept of a generator function G in the context of symmetries and conservation laws in Lagrangian mechanics, as introduced in Classical Mechanics by Kibble and Berkshire. The transformation equations imply a relationship between changes in coordinates and momenta, leading to a question about the validity of a derived equation. Participants clarify that G is a general function that defines transformations, and any mapping can be considered a transformation, provided it holds physical significance. Examples illustrate how G generates specific transformations, such as translations and rotations, emphasizing the role of G in defining the dynamics of the system. The conversation concludes with a consensus on the interpretation of the equations and the nature of the transformations discussed.
sophiatev
Messages
39
Reaction score
5
In Classical Mechanics by Kibble and Berkshire, in chapter 12.4 which focuses on symmetries and conservation laws (starting on page 291 here), the authors introduce the concept of a generator function G, where the transformation generated by G is given by (equation 12.29 on page 292 in the text)

##\delta q_\alpha = \partial G / \partial p_\alpha \ \delta \lambda##
##\delta p_\alpha = -\partial G / \partial q_\alpha \ \delta \lambda##

They seem to introduce G as a "general function of the coordinates, momenta, and time, G(q,p,t)", where q and p range over all n generalized coordinates ##q_\alpha## and ##p_\alpha##. But if the above equations are true, they imply that

## \partial G / \partial p_\alpha \ \delta p_\alpha = -\partial G / \partial q_\alpha \ \delta q_\alpha ##

This property does not seem generally true at all, and so I don't see why it would apply to a "general function" G. Am I missing something?
 
Physics news on Phys.org
Why do you think the authors imply the last equation?
 
vanhees71 said:
Why do you think the authors imply the last equation?
I don't have that book and I am no good at Lagrangian mechanics, but isn't the last equation an algebraic consequence of the first two equations? Solve both equations for ##\delta \lambda## and equate what you get.

P.S I have no idea what ##\delta \lambda ## is so I don't know if I can treat it algebraically.
 
Hi. Yes, ##G## is a perfectly general function.

The book is discussing transformations of the state. A transformation is just a map from one configuration of coordinates and momenta to another configuration. For example, in the usual cartesian coordinates ##x,y,z##, if you shift everything by ##\delta \lambda## in the x-direction, then the transformation is given by:

##x \rightarrow x + \delta \lambda##
##y \rightarrow y##
##z \rightarrow z##
##p^x \rightarrow p^x##
##p^y \rightarrow p^y##
##p^y \rightarrow p^y##

This transformation changes the x coordinate but nothing else.

Absolutely any mapping counts as a transformation, although the ones we are interested in for physics have some physical significance.

In general a transformation function would require one function for each coordinate and momenta:

##\delta q^j = Q^j(q,p,t) \delta \lambda##
##\delta p_j = P_j(q,p,t)\delta \lambda##

But an interesting type of transformation is one given by a generating function ##G(q,p, t)##, which defines the transformations via

##\delta q^j = \dfrac{\partial G}{\partial p_j} \delta \lambda##

##\delta p_j = - \dfrac{\partial G}{\partial q^j} \delta \lambda##

##G## is any function at all. It is just a way of generating a transformation.

For example, in one dimension, the transformation

##x \rightarrow x + \delta \lambda##
##p \rightarrow p##

is given by the generating function

##G = p##

Then ##\dfrac{\partial G}{\partial x} = 0## so ##\delta p = 0##. ##\dfrac{\partial G}{\partial p} = 1##, so ##\delta x = \delta \lambda##

The function ##G## is the x-component of momentum, and the effect is to shift ##x##. This is what is meant when they say that ##p## is the generator of translations.

A more interesting case is rotations. In two dimensions, a rotation is the transformation

##x \rightarrow x - y \delta \lambda##
##y \rightarrow y + x \delta \lambda##
##p_x \rightarrow p_x -p_y \delta \lambda##
##p_y \rightarrow p_y + p_x \delta \lambda##

(Note: this is an infinitesimal rotation, where we are allowed to approximate ##sin(\delta \lambda)## by ##\delta \lambda## and ##cos(\delta \lambda)## by 1. A real rotation is made up by summing many infinitesimal rotations.)

The generator for this transformation is:
##G = x p_y - y p_x##, which is just the angular momentum.

[Edit: was ##G = x p_y - z p_x##]

These sorts of transformations are interesting because if the transformation leaves the system unchanged, then the corresponding generator is a constant.
 
Last edited:
  • Informative
  • Like
Likes Delta2 and vanhees71
stevendaryl said:
Hi. Yes, ##G## is a perfectly general function.

The book is discussing transformations of the state. A transformation is just a map from one configuration of coordinates and momenta to another configuration. For example, in the usual cartesian coordinates ##x,y,z##, if you shift everything by ##\delta \lambda## in the x-direction, then the transformation is given by:

##x \rightarrow x + \delta \lambda##
##y \rightarrow y##
##z \rightarrow z##
##p^x \rightarrow p^x##
##p^y \rightarrow p^y##
##p^y \rightarrow p^y##

This transformation changes the x coordinate but nothing else.

Absolutely any mapping counts as a transformation, although the ones we are interested in for physics have some physical significance.

In general a transformation function would require one function for each coordinate and momenta:

##\delta q^j = Q^j(q,p,t) \delta \lambda##
##\delta p_j = P_j(q,p,t)\delta \lambda##

But an interesting type of transformation is one given by a generating function ##G(q,p, t)##, which defines the transformations via

##\delta q^j = \dfrac{\partial G}{\partial p_j} \delta \lambda##

##\delta p_j = - \dfrac{\partial G}{\partial q^j} \delta \lambda##

##G## is any function at all. It is just a way of generating a transformation.

For example, in one dimension, the transformation

##x \rightarrow x + \delta \lambda##
##p \rightarrow p##

is given by the generating function

##G = p##

Then ##\dfrac{\partial G}{\partial x} = 0## so ##\delta p = 0##. ##\dfrac{\partial G}{\partial p} = 1##, so ##\delta x = \delta \lambda##

The function ##G## is the x-component of momentum, and the effect is to shift ##x##. This is what is meant when they say that ##p## is the generator of translations.

A more interesting case is rotations. In two dimensions, a rotation is the transformation

##x \rightarrow x - y \delta \lambda##
##y \rightarrow y + x \delta \lambda##
##p_x \rightarrow p_x -p_y \delta \lambda##
##p_y \rightarrow p_y + p_x \delta \lambda##

(Note: this is an infinitesimal rotation, where we are allowed to approximate ##sin(\delta \lambda)## by ##\delta \lambda## and ##cos(\delta \lambda)## by 1. A real rotation is made up by summing many infinitesimal rotations.)

The generator for this transformation is:
##G = x p_y - z p_x##, which is just the angular momentum.

These sorts of transformations are interesting because if the transformation leaves the system unchanged, then the corresponding generator is a constant.
Was that last equation meant to be ##G = x p_y - y p_x##? But otherwise, I think that makes sense, thank you. Sounds like I was interpreting the ##\delta q^j## and ##\delta p_j## as the differential changes in the respective variables when taking a derivative (i.e. ##\delta G = \sum \partial G / \partial q^j \ \delta q^j + \partial G / \partial p_j \ \delta p_j##) rather than the differential changes produced by the transformation.
 
sophiatev said:
Was that last equation meant to be ##G = x p_y - y p_x##?

Yes, you're right.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top