System of two spin 1/2 particles in an external magnetic field

ConorDMK
Messages
25
Reaction score
0
Homework Statement
To save typing, I copied an image of the question and of my attempt at a solution. And the part I am having trouble with is part (iii).
Relevant Equations
Pauli spinors and matrices for x.
1620583282775.png


So what I'm not sure on, is calculating the matrix elements for part (iii) with Pauli spinors and Pauli matrices, and then finding the form of the corresponding states. As I don't see how using the hint helps.

1620585307763.png


The following is using the eigenvalues of the spin-operators.

1620584016635.png


1620591350235.png


Provided what I have is correct, I'm not sure on how to get to the form of the states.
 
Last edited:
Physics news on Phys.org
Once you have adopted a basis, you must stick with it. The problem tells you that you have to use a basis ##|m_1 m_2 \rangle##, which are eigenstates of ##\hat{S}_z## for the respective particles. You must then express ##\hat{H}_1## as a matrix in the same basis, not using spin up/down with respect to ##\hat{S}_x##, as you are doing after.
 
DrClaude said:
Once you have adopted a basis, you must stick with it. The problem tells you that you have to use a basis ##|m_1 m_2 \rangle##, which are eigenstates of ##\hat{S}_z## for the respective particles. You must then express ##\hat{H}_1## as a matrix in the same basis, not using spin up/down with respect to ##\hat{S}_x##, as you are doing after.
Oh yeah, of course, thank you! It's been a while since I've done this stuff.
So I use,
1620657917972.png

which makes sense as to why the hint says to use Pauli Matrices and Spinors.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top