MHB T31 vector subtraction is not commutative and not associative.

Click For Summary
SUMMARY

Vector subtraction is definitively not commutative and not associative. This is evidenced by counterexamples using specific vectors, such as $u=\begin{bmatrix}2\\-3\\4\\2\end{bmatrix}$ and $v=\begin{bmatrix}-1\\5\\2\\-7\end{bmatrix}$. When calculating $u-v$ and $v-u$, the results are different, confirming non-commutativity. Additionally, the expressions $u-(v-w)$ and $(u-v)-w$ yield different results for certain vector choices, illustrating the lack of associativity in vector subtraction.

PREREQUISITES
  • Understanding of vector operations, specifically vector subtraction
  • Familiarity with matrix notation and vector representation
  • Basic knowledge of commutative and associative properties in mathematics
  • Concept of complex numbers and their arithmetic
NEXT STEPS
  • Study the properties of vector addition and subtraction in detail
  • Learn about the implications of non-commutativity in vector spaces
  • Explore examples of associative and non-associative operations in linear algebra
  • Investigate the behavior of vector operations in complex number spaces
USEFUL FOR

Students of mathematics, particularly those studying linear algebra, educators teaching vector arithmetic, and anyone interested in the properties of mathematical operations involving vectors.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Prove, by giving counterexamples, that vector subtraction is not commutative
and not associative.

ok I read all I could on trying to understand this but seem to not see something simple
if we have the example of

$u=\begin{bmatrix}2\\-3\\4\\2\end{bmatrix} v=\begin{bmatrix}-1\\5\\2\\-7\end{bmatrix}
u+v=\begin{bmatrix}2\\-3\\4\\2\end{bmatrix}+\begin{bmatrix}-1\\5\\2\\-7\end{bmatrix}
=\begin{bmatrix}2+(-1)\\-3+5\\4+2\\2+(-7)\end{bmatrix}
=\begin{bmatrix}1\\2\\6\\-5\end{bmatrix}$

if we replace the + with - does that mean it is not commutative and not associative.
 
Physics news on Phys.org
If vector subtraction would be commutative, we would have $u-v=v-u$.
Suppose we substitute your $u$ and $v$ into it, does the equality hold then?

If vector subtraction would be associative, we would have $u-(v-w)=(u-v)-w$.
So we need example vectors $u,v,w$ such that those are not equal.
 
ok, that makes sense
 
I don't understand why you added vectors. Why didn't you try subtracting as you were asked to?
Commutative:
$\begin{bmatrix}2\\ -3 \\ 4 \\2 \end{bmatrix}- \begin{bmatrix} -1\\ 5 \\ 2 \\-7\end{bmatrix}= ?$

$\begin{bmatrix} -1\\ 5 \\ 2 \\-7\end{bmatrix}- \begin{bmatrix}2\\ -3 \\ 4 \\2 \end{bmatrix} = ?$

Are they the same?

Associative:
$\left(\begin{bmatrix}2\\ -3 \\ 4 \\2 \end{bmatrix}- \begin{bmatrix} -1\\ 5 \\ 2 \\-7\end{bmatrix}\right)$$- \begin{bmatrix}5\\ -3 \\ 7 \\1 \end{bmatrix}= ?$

$\begin{bmatrix}2\\ -3 \\ 4 \\2 \end{bmatrix}- \left( \begin{bmatrix} -1\\ 5 \\ 2 \\-7\end{bmatrix}- \begin{bmatrix}5\\ -3 \\ 7 \\1 \end{bmatrix}\right)= ?$

Are they the same?
 
so if we have a negative scaler like - 2 we write it as $+(-2)$
 
karush said:
so if we have a negative scaler like - 2 we write it as $+(-2)$
Honestly any way you write it it is still non-commutative, though it does help to remind you that you are subtracting and not adding because vector addition is commutative.

I realize that the problem is simply making a point about vector arithmetic, but the whole issue is that subtraction is not commutative over complex numbers. [math]a_{ij} - b_{ij} \neq b_{ij} - a_{ij}[/math] for any complex numbers.

-Dan
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K