Tan ##2 \theta=4 /(1-1)##. This means ##2 \theta=90^{\circ}## Why?

  • Thread starter ElectronicTeaCup
  • Start date
  • Tags
    Means Tan
  • #1
Homework Statement
Tan ##2 \theta=4 /(1-1)##. This means ##2 \theta=90^{\circ}## and ##\theta=45^{\circ}##
Relevant Equations
None
One of my solutions had this in one part. Why is this the case?
 

Answers and Replies

  • #2
For what values of ##\alpha## does ##\tan{\alpha}## diverge to positive infinity?
 
  • Like
Likes ElectronicTeaCup
  • #3
Homework Statement:: Tan ##2 \theta=4 /(1-1)##. This means ##2 \theta=90^{\circ}## and ##\theta=45^{\circ}##
Relevant Equations:: None

One of my solutions had this in one part. Why is this the case?
You know that as ##\theta \rightarrow \frac \pi 2## then ##\tan \theta \rightarrow +\infty##?
 
  • Like
Likes ElectronicTeaCup and etotheipi
  • #4
Oh right, I wasn't even thinking about infinity, I was just thinking of it as "undefined"

Also, is this also correct?


##\begin{array}{l}
\cot 2 \theta=0 \\
\frac{\cos 2 \theta}{\sin 2 \theta}=0 \\
\cos 2 \theta=0 \\
2 \theta=90
\end{array}##
 
  • #5
Oh right, I wasn't even thinking about infinity, I was just thinking of it as "undefined"

Also, is this also correct?


##\begin{array}{l}
\cot 2 \theta=0 \\
\frac{\cos 2 \theta}{\sin 2 \theta}=0 \\
\cos 2 \theta=0 \\
2 \theta=90
\end{array}##

That's right where ##2\theta## is between ##0## and ##180°##. Another solution could be ##2\theta = 270°##.
 
  • Like
Likes ElectronicTeaCup
  • #6
Isn't ##1-1## a bit ambiguous, though? Was this a limit like ##x-1##?
 
  • #7
Isn't ##1-1## a bit ambiguous, though? Was this a limit like ##x-1##?

A related example... if we parameterise a circle with ##(x,y) = (a\cos{\theta}, a\sin{\theta})## s.t. ##y' = -\frac{\cos{\theta}}{\sin{\theta}}## and wanted to see where the circle is vertical, would you also take issue with identifying ##\sin{\theta} = 0 \implies \theta = 0, \pi##?
 
  • #8
Isn't ##1-1## a bit ambiguous, though? Was this a limit like ##x-1##?
1 - 1 = 0, which is not at all ambiguous. However, the fraction ##\frac 4 {1 - 1}## is undefined.
 
  • #9
A related example... if we parameterise a circle with ##(x,y) = (a\cos{\theta}, a\sin{\theta})## s.t. ##y' = -\frac{\cos{\theta}}{\sin{\theta}}## and wanted to see where the circle is vertical, would you also take issue with identifying ##\sin{\theta} = 0 \implies \theta = 0, \pi##?
No problem with identifying the vertical part, but ##y'## either goes to infinity or negative infinity depending on how you choose to make ##\theta## go to either of those values (right or left of ##0## or ##\pi##).
The same thing with the ##1/(1-1)## fraction. Whether you have it ##1-x## or ##x-1##, then, however ##x## approaches ##1##, you will get different results (##\pi/2## or ##-\pi/2##).
@Mark44 this is what I was aiming at.
 
  • #10
No problem with identifying the vertical part, but ##y'## either goes to infinity or negative infinity depending on how you choose to make ##\theta## go to either of those values (right or left of ##0## or ##\pi##).
The same thing with the ##1/(1-1)## fraction. Whether you have it ##1-x## or ##x-1##, then, however ##x## approaches ##1##, you will get different results (##\pi/2## or ##-\pi/2##).
@Mark44 this is what I was aiming at.

I see your point, and I the interpretation would be clearer from context.

In most cases where I've seen these sorts of steps, it hasn't mattered from which side you approach ##x## (e.g. for my circle example, a gradient of ##\infty## is equivalent to one of ##-\infty## for purposes of determining the vertical tangent).
 
  • #11
A hand-wavy algebraic solution:

$$\tan 2x = \frac{2 \tan x}{1-\tan^2 x} = \frac{4}{0} \rightarrow 0 = 4-4\tan^2 x \rightarrow \tan^2 x = 1$$

And from here the ##\frac{\pi}{4}## falls out "neatly", along with all the other solutions. But be careful, this is "illegal" math. However, you started off with a statement of ##\frac{4}{0}##, I feel okay using hand-wavy tactics here.
 
  • Like
Likes ElectronicTeaCup
  • #12
Homework Statement:: Tan ##2 \theta=4 /(1-1)##.
Is that really the problem as given to you? I suggest that you had done some work to arrive at that. If so, please post the actual problem.
 
  • Like
Likes SammyS and archaic
  • #13
I seem not to understand this problem, well what i know is that,
##tan 2x## = ##\dfrac {2 tan x}{1-tan ^2 x}## and given that (from OP)##tan 2θ## = ##\dfrac {4}{1-1}## if indeed ##2tan x=4## then ##⇒tan x=2## which clearly contradicts with ##tan^2 x=1##.
 
Last edited:
  • #14
I seem not to understand this problem
With 0 in the denominator the problem is not well defined so there is no point wasting your time trying to understand it, move on.
 

Suggested for: Tan ##2 \theta=4 /(1-1)##. This means ##2 \theta=90^{\circ}## Why?

Back
Top