MHB Taylor Series Expansion Explanation

AI Thread Summary
The discussion centers on proving the identity \( S = a^x \) using the Taylor series expansion for the function \( f(x) = a^x \). The participants outline the Taylor series formula and derive the necessary derivatives to show that \( f^{(n)}(0) = (\ln(a))^n \). They connect this to the infinite summation \( S = \sum_{n=0}^{\infty} \frac{(x \ln a)^n}{n!} \), which equals \( e^{x \ln a} \). Additionally, there is a conversation about the constraints on the base \( a \), emphasizing the need for \( a > 0 \) to avoid issues with the logarithm. The proof effectively demonstrates the relationship between the Taylor series and the exponential function.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99

Hi mbeaumont99,

One thing you can do is to find the Taylor series expansion of \(f(x)=a^{x}\) and see whether it is \(\displaystyle \sum t_{n}\). The Taylor series for the function \(f \) around a neighborhood \(b\) is,

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(b)}{n!} \, (x-b)^{n}\]

Of course I am assuming here that the function \(f\) can be expressed as a Taylor series expansion around a neighborhood of \(b\) (that is \(f\) is analytic). To get a more detailed idea about what functions are analytic read this and this. We shall use \(b=0\) so that we get the Maclaurin's series.

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(0)}{n!} \, x^{n}\]

Now we have to find out \(f^{(n)}(0)\) with regard to the function \(f(x)=a^{x}\). Differentiating \(f\) a couple of times we can "feel" that \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,n\in\mathbb{N}=\mathbb{Z}\cup\{0\}\). To prove this in a formal manner we shall use mathematical induction.

When \(n=0\), the result is obvious. We shall assume that the result is true for \(n=p\in\mathbb{N}\). That is,

\[f^{(p)}(x)=a^{x}(\ln(a))^p\]

Now consider, \(f^{(p+1)}(x)\).

\[f^{(p+1)}(x)=\frac{d}{dx}f^{(p)}(x)=(\ln(a))^p \frac{d}{dx}a^x=a^x(\ln(a))^{p+1}\]

Therefore by Mathematical induction, \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,\in\mathbb{N}\)

\[\therefore f^{n}(0)=(\ln(a))^n\,\forall\,\in\mathbb{N}\]

Hence,

\[f(x)=\sum_{n=0}^{\infty}\frac{(\ln(a))^n}{n!}\, x^{n}=\sum_{n=0}^{\infty}t_{n}\]
 
Mathematics news on Phys.org
Sudharaka said:
mbeaumont99's question from Math Help Forum,

mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99


This is asking for the summation:

\( \displaystyle S=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!} \)

We note the series expansion for the exponential function:

\( \displaystyle e^u=\sum_{n=0}^{\infty} \frac{u^n}{n!} \)

which is convergent for all real or complex \(u\). Put \(u=x\ln(a) \) to get:

\( \displaystyle e^{x\ln(a)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

Now \( x\ln(a) = \ln(a^x) \) so:

\( \displaystyle a^x=e^{\ln(a^x)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

CB
 
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$

I expect the implied restriction is that \(a>0\), but I am reasonably sure that once one picks a branch of the logarithm the series converges to the given sum (assuming \( a\ne 0\) ).

CB
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
1
Views
1K
Replies
5
Views
2K
Replies
33
Views
3K
Replies
2
Views
1K
Replies
2
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top