MHB Taylor Series Expansion Explanation

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99

Hi mbeaumont99,

One thing you can do is to find the Taylor series expansion of \(f(x)=a^{x}\) and see whether it is \(\displaystyle \sum t_{n}\). The Taylor series for the function \(f \) around a neighborhood \(b\) is,

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(b)}{n!} \, (x-b)^{n}\]

Of course I am assuming here that the function \(f\) can be expressed as a Taylor series expansion around a neighborhood of \(b\) (that is \(f\) is analytic). To get a more detailed idea about what functions are analytic read this and this. We shall use \(b=0\) so that we get the Maclaurin's series.

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(0)}{n!} \, x^{n}\]

Now we have to find out \(f^{(n)}(0)\) with regard to the function \(f(x)=a^{x}\). Differentiating \(f\) a couple of times we can "feel" that \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,n\in\mathbb{N}=\mathbb{Z}\cup\{0\}\). To prove this in a formal manner we shall use mathematical induction.

When \(n=0\), the result is obvious. We shall assume that the result is true for \(n=p\in\mathbb{N}\). That is,

\[f^{(p)}(x)=a^{x}(\ln(a))^p\]

Now consider, \(f^{(p+1)}(x)\).

\[f^{(p+1)}(x)=\frac{d}{dx}f^{(p)}(x)=(\ln(a))^p \frac{d}{dx}a^x=a^x(\ln(a))^{p+1}\]

Therefore by Mathematical induction, \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,\in\mathbb{N}\)

\[\therefore f^{n}(0)=(\ln(a))^n\,\forall\,\in\mathbb{N}\]

Hence,

\[f(x)=\sum_{n=0}^{\infty}\frac{(\ln(a))^n}{n!}\, x^{n}=\sum_{n=0}^{\infty}t_{n}\]
 
Mathematics news on Phys.org
Sudharaka said:
mbeaumont99's question from Math Help Forum,

mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99


This is asking for the summation:

\( \displaystyle S=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!} \)

We note the series expansion for the exponential function:

\( \displaystyle e^u=\sum_{n=0}^{\infty} \frac{u^n}{n!} \)

which is convergent for all real or complex \(u\). Put \(u=x\ln(a) \) to get:

\( \displaystyle e^{x\ln(a)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

Now \( x\ln(a) = \ln(a^x) \) so:

\( \displaystyle a^x=e^{\ln(a^x)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

CB
 
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$

I expect the implied restriction is that \(a>0\), but I am reasonably sure that once one picks a branch of the logarithm the series converges to the given sum (assuming \( a\ne 0\) ).

CB
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
998
Replies
5
Views
2K
Replies
33
Views
3K
Replies
2
Views
1K
Replies
2
Views
3K
Replies
2
Views
2K
Replies
2
Views
2K
Back
Top