Taylor Series Expansion Explanation

Click For Summary
SUMMARY

The discussion focuses on the Taylor series expansion of the function \(f(x) = a^x\) and its relation to the infinite summation \(S = \sum_{n=0}^{\infty} \frac{(x \ln a)^n}{n!}\). The participants confirm that the Taylor series can be expressed as \(S = e^{x \ln a}\), leading to the conclusion that \(S = a^x\). The proof involves using mathematical induction to establish the derivatives of \(f(x)\) and emphasizes the requirement that \(a > 0\) for the series to converge correctly.

PREREQUISITES
  • Understanding of Taylor series and Maclaurin series
  • Familiarity with exponential functions and logarithms
  • Basic knowledge of mathematical induction
  • Concept of convergence in infinite series
NEXT STEPS
  • Study the properties of Taylor series and their applications in calculus
  • Learn about the convergence criteria for infinite series
  • Explore the implications of using logarithms with negative and zero values
  • Investigate the relationship between exponential functions and their Taylor series expansions
USEFUL FOR

Students in calculus, mathematicians interested in series expansions, and educators teaching Taylor series and exponential functions.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99

Hi mbeaumont99,

One thing you can do is to find the Taylor series expansion of \(f(x)=a^{x}\) and see whether it is \(\displaystyle \sum t_{n}\). The Taylor series for the function \(f \) around a neighborhood \(b\) is,

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(b)}{n!} \, (x-b)^{n}\]

Of course I am assuming here that the function \(f\) can be expressed as a Taylor series expansion around a neighborhood of \(b\) (that is \(f\) is analytic). To get a more detailed idea about what functions are analytic read this and this. We shall use \(b=0\) so that we get the Maclaurin's series.

\[f(x)=\sum_{n=0}^{\infty}\frac {f^{(n)}(0)}{n!} \, x^{n}\]

Now we have to find out \(f^{(n)}(0)\) with regard to the function \(f(x)=a^{x}\). Differentiating \(f\) a couple of times we can "feel" that \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,n\in\mathbb{N}=\mathbb{Z}\cup\{0\}\). To prove this in a formal manner we shall use mathematical induction.

When \(n=0\), the result is obvious. We shall assume that the result is true for \(n=p\in\mathbb{N}\). That is,

\[f^{(p)}(x)=a^{x}(\ln(a))^p\]

Now consider, \(f^{(p+1)}(x)\).

\[f^{(p+1)}(x)=\frac{d}{dx}f^{(p)}(x)=(\ln(a))^p \frac{d}{dx}a^x=a^x(\ln(a))^{p+1}\]

Therefore by Mathematical induction, \(f^{n}(x)=a^x(\ln(a))^n\,\forall\,\in\mathbb{N}\)

\[\therefore f^{n}(0)=(\ln(a))^n\,\forall\,\in\mathbb{N}\]

Hence,

\[f(x)=\sum_{n=0}^{\infty}\frac{(\ln(a))^n}{n!}\, x^{n}=\sum_{n=0}^{\infty}t_{n}\]
 
Physics news on Phys.org
Sudharaka said:
mbeaumont99's question from Math Help Forum,

mbeaumont99's question from Math Help Forum,

This is to do with some infinite summation work that we are going through at college at the moment. We have the function \(\displaystyle t_{n} =\frac{(x\ln a)^{n}}{n!}\) and have been substituting in different x and a values to determine a general statement for the infinite summation of the function. I have found that \(\displaystyle S_{n}=a^{x}\)

I need to do a formal proof for this general statement and heard that a Taylor series would be able to do that. If anyone would be able to start me off on this, send me in a different direction, or simply contribute to this thread then I would be extremely appreciative.

Thanks,
mbeaumont99


This is asking for the summation:

\( \displaystyle S=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!} \)

We note the series expansion for the exponential function:

\( \displaystyle e^u=\sum_{n=0}^{\infty} \frac{u^n}{n!} \)

which is convergent for all real or complex \(u\). Put \(u=x\ln(a) \) to get:

\( \displaystyle e^{x\ln(a)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

Now \( x\ln(a) = \ln(a^x) \) so:

\( \displaystyle a^x=e^{\ln(a^x)}=\sum_{n=0}^{\infty} \frac{(x\ln(a))^n}{n!}=S \)

CB
 
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
All right!... it seems that we all agree on the identity...

$\displaystyle a^{x}= e^{x\ \ln a}= \sum_{n=0}^{\infty} \frac{(x\ \ln a)^{n}}{n!}$ (1)

Nobody however has imposed constraints on a, so that can a be anything we like?... but in this case what does it happen when is $a=0?$... or when is $a<0$?... better is to avoid problems and impose $a>0$ or critically examine the general case of any real value for a?... a nice question!...

Kind regards

$\chi$ $\sigma$

I expect the implied restriction is that \(a>0\), but I am reasonably sure that once one picks a branch of the logarithm the series converges to the given sum (assuming \( a\ne 0\) ).

CB
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K