Tension developed in a charged ring

AI Thread Summary
The discussion centers on calculating the electric field at the circumference of a charged ring, where tension in the ring is balanced by the electric field. The derived equation for tension is T = EQ/(2π), and the field due to an infinitesimal charge is expressed as dE = k(dq)/z². However, the integral to find the net electric field at the circumference does not converge, suggesting an infinite field, which raises questions about the calculations. The user also notes that calculating the field at any point in the plane of the ring proved too complex for computational tools. The divergence of the electric field at a line charge is acknowledged, indicating a deeper physical significance.
Hamiltonian
Messages
296
Reaction score
193
Homework Statement
calculate the tension developed in ring of radius ##R##( of negligible thickness) and charge ##Q##
Relevant Equations
-
1622133322336.png

consider a small element that subtends an angle ##2\Delta \theta## at the center of the ring. balancing the forces on this element gives:
(let the field due to the ring be at its circumference be ##E##).
$$2T\Delta \theta = E(dq) = E (\frac{Q}{2\pi})(2\Delta \theta)$$
$$T = \frac{EQ}{2\pi}$$
now the problem is reduced to finding the field due to the charged ring at its circumference:
1622133693717.png

let the distance from an infinitesimal charge ##(dq)## to the required point on the circumference be ##z##
$$z^2 = (Rsin\theta + R)^2 + (Rcos\theta)^2 = 2R^2(1+sin\theta)$$
$$(dE) = k(dq)/z^2 = \frac {k(dq)}{2R^2(1+sin\theta)}$$
by symmetry arguments the net field at the circumference will be only in the y direction:
$$(dE_{net}) = (dE)(cos\alpha)$$
$$\alpha = \pi/4 - \theta/2$$
$$(dq) = (Q/2\pi) d\theta$$
$$dE_{net} = k(dq)\frac{cos(\pi/4 - \theta/2)}{1+sin\theta} = \frac{kQ}{4\pi R^2} \frac{cos(\pi/4 - \theta/2)}{1+sin\theta} (d\theta)$$
$$E_{net} = \frac{kQ}{4\pi R^2} \int_0^{2\pi} \frac{cos(\pi/4 - \theta/2)}{1+sin\theta} d\theta$$

I put the integral into wolframalpha and it does not converge!
that would mean the field is infinite which obviously can't be true.
is there any physical significance to this or have i made a mistake in calculating the field at the circumference of the ring.

I had also tried to find the field at any general point in the plane of the ring and then wanted to find the field at circumference but the integral proved to be very complex (wolframalpha exceeded standard computation timeo_O) hence i didn't go down that path.
 
Physics news on Phys.org
And a point charge !
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top