Tension developed in a charged ring

AI Thread Summary
The discussion centers on calculating the electric field at the circumference of a charged ring, where tension in the ring is balanced by the electric field. The derived equation for tension is T = EQ/(2π), and the field due to an infinitesimal charge is expressed as dE = k(dq)/z². However, the integral to find the net electric field at the circumference does not converge, suggesting an infinite field, which raises questions about the calculations. The user also notes that calculating the field at any point in the plane of the ring proved too complex for computational tools. The divergence of the electric field at a line charge is acknowledged, indicating a deeper physical significance.
Hamiltonian
Messages
296
Reaction score
193
Homework Statement
calculate the tension developed in ring of radius ##R##( of negligible thickness) and charge ##Q##
Relevant Equations
-
1622133322336.png

consider a small element that subtends an angle ##2\Delta \theta## at the center of the ring. balancing the forces on this element gives:
(let the field due to the ring be at its circumference be ##E##).
$$2T\Delta \theta = E(dq) = E (\frac{Q}{2\pi})(2\Delta \theta)$$
$$T = \frac{EQ}{2\pi}$$
now the problem is reduced to finding the field due to the charged ring at its circumference:
1622133693717.png

let the distance from an infinitesimal charge ##(dq)## to the required point on the circumference be ##z##
$$z^2 = (Rsin\theta + R)^2 + (Rcos\theta)^2 = 2R^2(1+sin\theta)$$
$$(dE) = k(dq)/z^2 = \frac {k(dq)}{2R^2(1+sin\theta)}$$
by symmetry arguments the net field at the circumference will be only in the y direction:
$$(dE_{net}) = (dE)(cos\alpha)$$
$$\alpha = \pi/4 - \theta/2$$
$$(dq) = (Q/2\pi) d\theta$$
$$dE_{net} = k(dq)\frac{cos(\pi/4 - \theta/2)}{1+sin\theta} = \frac{kQ}{4\pi R^2} \frac{cos(\pi/4 - \theta/2)}{1+sin\theta} (d\theta)$$
$$E_{net} = \frac{kQ}{4\pi R^2} \int_0^{2\pi} \frac{cos(\pi/4 - \theta/2)}{1+sin\theta} d\theta$$

I put the integral into wolframalpha and it does not converge!
that would mean the field is infinite which obviously can't be true.
is there any physical significance to this or have i made a mistake in calculating the field at the circumference of the ring.

I had also tried to find the field at any general point in the plane of the ring and then wanted to find the field at circumference but the integral proved to be very complex (wolframalpha exceeded standard computation timeo_O) hence i didn't go down that path.
 
Physics news on Phys.org
And a point charge !
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top