Tension Exercise on frictionless inclined plane

Click For Summary
SUMMARY

The discussion centers on a physics problem involving two masses, ##m_1## and ##m_2##, connected by a massless string over a frictionless pulley, with ##m_1## on a frictionless inclined plane at angle ##\theta##. Participants analyze the forces acting on both masses using Newton's Second Law to derive the acceleration and tension in the string. The final equations established that the tension, ##T##, is given by ##T = \frac{m_1 m_2}{m_1 + m_2} g (1 + \sin \theta)##, and the acceleration can be calculated from this tension. The discussion concludes with a method to determine the final velocity of the masses after mass ##m_2## has fallen a height ##H##.

PREREQUISITES
  • Understanding of Newton's Second Law
  • Knowledge of tension in strings and forces on inclined planes
  • Familiarity with free body diagrams
  • Basic kinematic equations for motion
NEXT STEPS
  • Study the derivation of tension in systems involving pulleys and inclined planes
  • Learn about free body diagram techniques for multi-body systems
  • Explore kinematic equations related to falling objects and inclined motion
  • Investigate the effects of friction on inclined planes and pulley systems
USEFUL FOR

Students in physics courses, educators teaching mechanics, and anyone interested in understanding dynamics involving pulleys and inclined planes.

Kernul
Messages
211
Reaction score
7

Homework Statement


A mass ##m_1## is attached to a second mass ##m_2 > m_1## by an Acme (massless, unstretchable) string. ##m_1## sits on a frictionless inclined plane at an angle ##\theta## with the horizontal; ##m_2## is hanging over the high end of the plane, suspended by the taut string from an Acme (frictionless, massless) pulley. At time ##t = 0## both masses are released from rest.
a) Draw the force/free body diagram for this problem.
b) Find the acceleration of the two masses.
c) Find the tension T in the string.
d) How fast are the two blocks moving when mass m2 has fallen a height H (assuming that m1
hasn’t yet hit the pulley)?
Immagine.png


Homework Equations


Tension
Newton's Second Law

The Attempt at a Solution


First thing I drew the free body diagram this way:
photo_2016-12-19_19-15-27.jpg

Now I write the forces acting on both masses with Newton's Second Law, knowing that the accelerations of both masses are the same, so ##a = a_1 = a_2##.
First mass:
$$\begin{cases}
F_{1 x} = m_1 a_x = T - m_1 g sin \theta \\
F_{1 y} = m_1 a_y = N - m_1 g cos \theta = 0
\end{cases}$$
Second mass:
$$\begin{cases}
F_{2 x} = m_2 a_x = m_2 g sin \theta - T sin \theta \\
F_{2 y} = m_2 a_y = m_2 g cos \theta - T cos \theta
\end{cases}$$
Now what I don't understand is how I find ##a_y##. Because the only way for ##m_1 a_y = 0## is that ##a_y = 0## but this would go in contrast with the fact that in the second mass ##a_y## is something, since the mass moves along the y-axis. Or it is ##0## because the mass moves at a constant speed? In that case I would have these:
First mass:
$$\begin{cases}
a_x = \frac{T}{m_1} - g sin \theta \\
N = m_1 g cos \theta
\end{cases}$$
Second mass:
$$\begin{cases}
a_x = g sin \theta - \frac{T}{m_2} sin \theta \\
m_2 g cos \theta = T cos \theta
\end{cases}$$
With ##m_2 g cos \theta = T cos \theta## becoming ##T = m_2 g##.
Is this way correct?
 
Physics news on Phys.org
Kernul said:

Homework Statement


A mass ##m_1## is attached to a second mass ##m_2 > m_1## by an Acme (massless, unstretchable) string. ##m_1## sits on a frictionless inclined plane at an angle ##\theta## with the horizontal; ##m_2## is hanging over the high end of the plane, suspended by the taut string from an Acme (frictionless, massless) pulley. At time ##t = 0## both masses are released from rest.
a) Draw the force/free body diagram for this problem.
b) Find the acceleration of the two masses.
c) Find the tension T in the string.
d) How fast are the two blocks moving when mass m2 has fallen a height H (assuming that m1
hasn’t yet hit the pulley)?
View attachment 110562

Homework Equations


Tension
Newton's Second Law

The Attempt at a Solution


First thing I drew the free body diagram this way:
View attachment 110563
Now I write the forces acting on both masses with Newton's Second Law, knowing that the accelerations of both masses are the same, so ##a = a_1 = a_2##.
First mass:
$$\begin{cases}
F_{1 x} = m_1 a_x = T - m_1 g sin \theta \\
F_{1 y} = m_1 a_y = N - m_1 g cos \theta = 0
\end{cases}$$
Second mass:
$$\begin{cases}
F_{2 x} = m_2 a_x = m_2 g sin \theta - T sin \theta \\
F_{2 y} = m_2 a_y = m_2 g cos \theta - T cos \theta
\end{cases}$$
Now what I don't understand is how I find ##a_y##. Because the only way for ##m_1 a_y = 0## is that ##a_y = 0## but this would go in contrast with the fact that in the second mass ##a_y## is something, since the mass moves along the y-axis. Or it is ##0## because the mass moves at a constant speed? In that case I would have these:
First mass:
$$\begin{cases}
a_x = \frac{T}{m_1} - g sin \theta \\
N = m_1 g cos \theta
\end{cases}$$
Second mass:
$$\begin{cases}
a_x = g sin \theta - \frac{T}{m_2} sin \theta \\
m_2 g cos \theta = T cos \theta
\end{cases}$$
With ##m_2 g cos \theta = T cos \theta## becoming ##T = m_2 g##.
Is this way correct?
I can't really see the details of your diagram too well, but why are you assuming that block 2 has an acceleration in the x-direction?
 
Kernul said:

Homework Statement


A mass ##m_1## is attached to a second mass ##m_2 > m_1## by an Acme (massless, unstretchable) string. ##m_1## sits on a frictionless inclined plane at an angle ##\theta## with the horizontal; ##m_2## is hanging over the high end of the plane, suspended by the taut string from an Acme (frictionless, massless) pulley. At time ##t = 0## both masses are released from rest.
a) Draw the force/free body diagram for this problem.
b) Find the acceleration of the two masses.
c) Find the tension T in the string.
d) How fast are the two blocks moving when mass m2 has fallen a height H (assuming that m1
hasn’t yet hit the pulley)?
View attachment 110562

Homework Equations


Tension
Newton's Second Law

The Attempt at a Solution


First thing I drew the free body diagram this way:
View attachment 110563
Now I write the forces acting on both masses with Newton's Second Law, knowing that the accelerations of both masses are the same, so ##a = a_1 = a_2##.
First mass:
$$\begin{cases}
F_{1 x} = m_1 a_x = T - m_1 g sin \theta \\
F_{1 y} = m_1 a_y = N - m_1 g cos \theta = 0
\end{cases}$$
Second mass:
$$\begin{cases}
F_{2 x} = m_2 a_x = m_2 g sin \theta - T sin \theta \\
F_{2 y} = m_2 a_y = m_2 g cos \theta - T cos \theta
\end{cases}$$
Now what I don't understand is how I find ##a_y##. Because the only way for ##m_1 a_y = 0## is that ##a_y = 0## but this would go in contrast with the fact that in the second mass ##a_y## is something, since the mass moves along the y-axis. Or it is ##0## because the mass moves at a constant speed? In that case I would have these:
First mass:
$$\begin{cases}
a_x = \frac{T}{m_1} - g sin \theta \\
N = m_1 g cos \theta
\end{cases}$$
Second mass:
$$\begin{cases}
a_x = g sin \theta - \frac{T}{m_2} sin \theta \\
m_2 g cos \theta = T cos \theta
\end{cases}$$
With ##m_2 g cos \theta = T cos \theta## becoming ##T = m_2 g##.
Is this way correct?
you do not have to use the same coordinate system for the two masses. You may use a vertical y-axis for mass 2 in which case there are only forces along y for mass 2 and the equation is simple. The key point is to use indices to distinguish the accelerations of the two masses, you should use ##a_{x1}, a_{y1}, a_{x2},a_{y2}##. You should notice that then the values of ##a_{x1}## and ##a_{y2}## are not independent, they are related by a simple equation.
 
  • Like
Likes   Reactions: Buffu
Elvis 123456789 said:
I can't really see the details of your diagram too well, but why are you assuming that block 2 has an acceleration in the x-direction?
It's because I used the same diagram for both masses, so I end up having the second mass moving on the x-axis too.

nrqed said:
you do not have to use the same coordinate system for the two masses. You may use a vertical y-axis for mass 2 in which case there are only forces along y for mass 2 and the equation is simple. The key point is to use indices to distinguish the accelerations of the two masses, you should use ##a_{x1}, a_{y1}, a_{x2},a_{y2}##. You should notice that then the values of ##a_{x1}## and ##a_{y2}## are not independent, they are related by a simple equation.
But I've been taught that since the two masses are linked by a string, we should use one single coordinate system for both.
Anyway, following your way, the first one remains the same and the second one becomes like this:
$$\begin{cases}
a_{x 2} = 0 \\
a_{y 2} = g - \frac{T}{m_2}
\end{cases}$$
Being not independent because of the string, ##a_{x 1}## and ##a_{y 2}## are equal and so we have:
$$\frac{T}{m_1} - g sin \theta = g - \frac{T}{m_2}$$
With some passages I end up with:
$$T = \frac{m_1 m_2}{m_1 + m_2} g (1 + sin \theta)$$
Substituting this into one of the two I get the acceleration and substituting it into this equation ##v_f = \sqrt{2 a H}## I get the last point of the exercise.
Am I right?
 
Kernul said:
It's because I used the same diagram for both masses, so I end up having the second mass moving on the x-axis too.But I've been taught that since the two masses are linked by a string, we should use one single coordinate system for both.
Anyway, following your way, the first one remains the same and the second one becomes like this:
$$\begin{cases}
a_{x 2} = 0 \\
a_{y 2} = g - \frac{T}{m_2}
\end{cases}$$
Being not independent because of the string, ##a_{x 1}## and ##a_{y 2}## are equal and so we have:
$$\frac{T}{m_1} - g sin \theta = g - \frac{T}{m_2}$$
With some passages I end up with:
$$T = \frac{m_1 m_2}{m_1 + m_2} g (1 + sin \theta)$$
Substituting this into one of the two I get the acceleration and substituting it into this equation ##v_f = \sqrt{2 a H}## I get the last point of the exercise.
Am I right?
Looks good!
 
  • Like
Likes   Reactions: Kernul

Similar threads

  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 68 ·
3
Replies
68
Views
13K
  • · Replies 29 ·
Replies
29
Views
4K