Tension in the string of a simple pendulum

Click For Summary
The discussion centers on determining whether the average tension in a pendulum's string is larger or smaller than the weight of the pendulum. Participants express confusion about how to average the tension over time, particularly when considering small angular displacements. It is suggested that to find the average tension, one should express it as a function of time and integrate it, although this approach may not yield straightforward results. The conversation emphasizes the importance of approximating the cosine function for small angles and the implications of discarding higher-order terms. Ultimately, the discussion encourages a deeper analysis using energy equations alongside the tension equation for clarity.
BearY
Messages
53
Reaction score
8

Homework Statement


Is the tension in the string of a pendulum, when averaged over time, larger or smaller than the weight of the pendulum? Quantify your answer. You may also assume that the angular amplitude of the oscillations is small.

Homework Equations


For tension ##T##, angular displacement of the pendulum ##\phi## and length of the pendulum ##l##
$$T = mgcos(\phi)+ ml\dot{\phi}^2$$
$$\phi = Asin(\omega t)$$

The Attempt at a Solution


I am lost at the "when averaged over time" part. I think the only way to "quantify" the answer is to examine the value of $$T_{average} - mg$$ But I don't know how to average T.
 
Physics news on Phys.org
BearY said:

Homework Statement


Is the tension in the string of a pendulum, when averaged over time, larger or smaller than the weight of the pendulum? Quantify your answer. You may also assume that the angular amplitude of the oscillations is small.

Homework Equations


For tension ##T##, angular displacement of the pendulum ##\phi## and length of the pendulum ##l##
$$T = mgcos(\phi)+ ml\dot{\phi}^2$$
$$\phi = Asin(\omega t)$$

The Attempt at a Solution


I am lost at the "when averaged over time" part. I think the only way to "quantify" the answer is to examine the value of $$T_{average} - mg$$ But I don't know how to average T.
The first thing you would need to do is express T as a function of time.
If it is not clear how to average T over time, it might help to plot T as a function of t.
Also, think about how you might use the assumption that A is small.
 
  • Like
Likes BearY
BearY said:
I don't know how to average T
To average over time you need to integrate wrt time. But doing that with ##T = mgcos(\phi)+ ml\dot{\phi}^2## will not be fruitful.
In approximating it for small oscillations as SHM you have already discarded third order terms; I suggest you are also expected to discard second order terms. That would approximate cos(ϕ) as ... what?
 
  • Like
Likes BearY
haruspex said:
To average over time you need to integrate wrt time. But doing that with ##T = mgcos(\phi)+ ml\dot{\phi}^2## will not be fruitful.
In approximating it for small oscillations as SHM you have already discarded third order terms; I suggest you are also expected to discard second order terms. That would approximate cos(ϕ) as ... what?
Sorry For the late reply I just got home.
Discarding 2nd order term, from my understanding, meaning discarding ##\frac{\phi^2}{2!}##. That would make ##cos(\phi)=1##. But isn't the variation in ##cos(\phi)## the reason this question is set up this way? Because now it's just averaging the centripetal force.

Edit: I meant it's not like I know how to solve it without discarding it but still.
 
Last edited:
BearY said:
Sorry For the late reply I just got home.
Discarding 2nd order term, from my understanding, meaning discarding ##\frac{\phi^2}{2!}##. That would make ##cos(\phi)=1##. But isn't the variation in ##cos(\phi)## the reason this question is set up this way? Because now it's just averaging the centripetal force.

Edit: I meant it's not like I know how to solve it without discarding it but still.
I understand your doubts, so instead write out the energy equation, without any approximations, and combine that with your tension equation. You can make a small angle approximation later.
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
Replies
5
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
1
Views
6K