I Tensor decomposition, Sym representations and irreps.

knowwhatyoudontknow
Messages
30
Reaction score
5
TL;DR Summary
Tensor decomposition, Sym[SUB]n[/SUB] representations and irreps.
New to group theory. I have 3 questions:

1. Tensor decomposition into Tab = T[ab] +T(traceless){ab} + Tr(T{ab}) leads to invariant subspaces. Is this enough to imply these subreps are irreducible?

2. The Symn representations of a group are irreps. Why?

3. What is the connection between Symn representations and tensor decomposition?
 
Physics news on Phys.org
You need to give more details and context. Are you looking at representations of finite groups?

1. I am not sure what the question is.

2. This doesn't seem right. A finite group has only finitely many irreducible representations. So the ##Sym^n## cannot be all irreducible.

3. Also not sure what you are asking.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top