I Tensor decomposition, Sym representations and irreps.

knowwhatyoudontknow
Messages
30
Reaction score
5
TL;DR
Tensor decomposition, Sym[SUB]n[/SUB] representations and irreps.
New to group theory. I have 3 questions:

1. Tensor decomposition into Tab = T[ab] +T(traceless){ab} + Tr(T{ab}) leads to invariant subspaces. Is this enough to imply these subreps are irreducible?

2. The Symn representations of a group are irreps. Why?

3. What is the connection between Symn representations and tensor decomposition?
 
Physics news on Phys.org
You need to give more details and context. Are you looking at representations of finite groups?

1. I am not sure what the question is.

2. This doesn't seem right. A finite group has only finitely many irreducible representations. So the ##Sym^n## cannot be all irreducible.

3. Also not sure what you are asking.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...