Tensor Product Functor & Einstein Eqns: Relation?

Click For Summary
The discussion explores the relationship between the Tensor Product Functor in category theory and Einstein's equations in general relativity. The initial inquiry stems from a desire to understand how knowledge of tensor product functors might aid in grasping the mathematics behind Einstein's equations. It is noted that tensor products serve to linearize bilinear operations and represent a mathematical language, while Einstein's equations may be expressed in that same language. The conversation suggests that understanding one may not directly lead to understanding the other, similar to learning English before reading Shakespeare. A potential research paper idea is proposed, emphasizing the need to learn general relativity to deepen this exploration.
nateHI
Messages
145
Reaction score
4
At the risk of sounding ignorant I'd like to propose a question to someone well versed in Homological Algebra and General Relativity. I'm starting to study the tensor product functor in the context of category theory because I'm interested in possibly doing a paper on TQFT for a directed reading course. My question is, after working through the mathematics of the tensor functor how close will I be to being able to work out the mathematics of the Einstein Equations?

Edit/Addition: I guess my question should be, what is the relationship (if any) between the Tensor Product Functor from Category Theory and the Einstein Equations?
 
Last edited:
Physics news on Phys.org
unfortunately I know nothing of general relativity or einstein's equations. but i know something about tensor product functors. they just express a way to linearize bilnear operations. (in mumbo jumbo talk, they represent the functor of bilinear maps, or equivalently, they turn the composition of two Hom functors into one Hom functor.) they are a certain mathematical language, whereas einstein's equations presumably say something in that language. so to me your question sounds sort of like asking whether after learning english one will be able to understand shakespeare. maybe, maybe not. as an aside, einstein did not have the abstract fomulation of tensor products as a functor i would guess, hence almost certainly used the more computational version of it.
 
mathwonk said:
unfortunately I know nothing of general relativity or einstein's equations. but i know something about tensor product functors. they just express a way to linearize bilnear operations. (in mumbo jumbo talk, they represent the functor of bilinear maps, or equivalently, they turn the composition of two Hom functors into one Hom functor.) they are a certain mathematical language, whereas einstein's equations presumably say something in that language. so to me your question sounds sort of like asking whether after learning english one will be able to understand shakespeare. maybe, maybe not. as an aside, einstein did not have the abstract fomulation of tensor products as a functor i would guess, hence almost certainly used the more computational version of it.
That's along the lines of what I was guessing. I suppose an idea for a paper would be to carry this line of thought out and make it precise. I suppose I would have to learn some GR which seems rather daunting.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
9K
  • · Replies 7 ·
Replies
7
Views
751
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K