Terminologies used to describe tensor product of vector spaces

Click For Summary
SUMMARY

The discussion focuses on the terminologies related to the tensor product of vector spaces, specifically the dyadic tensor product represented as ##u \otimes v## for vectors ##u, v \in V##. It emphasizes that this product is a bilinear map defined on the Cartesian product ##V^* \times V^* \rightarrow \mathbb{R}## and can be understood through the canonical isomorphism ##V \cong V^{**}##. The conversation also clarifies that the tensor product exists uniquely up to isomorphism, and various methods can be employed to define product tensors, including the use of basis vectors and their associated duals.

PREREQUISITES
  • Understanding of vector spaces and their properties
  • Familiarity with bilinear maps and dual spaces
  • Knowledge of canonical isomorphisms in linear algebra
  • Basic concepts of multilinear algebra and tensor products
NEXT STEPS
  • Study the Universal Property of tensor products in linear algebra
  • Learn about the relationship between dual spaces and tensor products
  • Explore the construction of tensor products using basis vectors
  • Investigate applications of tensor products in multilinear maps
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in advanced concepts of tensor products and vector spaces.

cianfa72
Messages
2,939
Reaction score
308
TL;DR
About the terminologies used to describe tensor product of vector spaces
Hi,
I'm in trouble with the different terminologies used for tensor product of two vectors.

Namely a dyadic tensor product of vectors ##u, v \in V## is written as ##u \otimes v##. It is basically a bi-linear map defined on the cartesian product ##V^* \times V^* \rightarrow \mathbb R##.

From a technical point of view, I believe it is actually the tensor product of the bidual ##u^{**} \otimes v^{**}##, then using the canonical isomorphism ##V \cong V^{**}## we are allowed to understand it as the product tensor of the two vector ##u, v \in V##.

In general when we talk of the product tensor ##u \otimes v## we have in mind the dyadic tensor given by the product tensor of the canonically associated bi-duals ##u^{**}## and ##v^{**} \in V^{**}##.

Other thing is the product tensor of vector spaces such as ##V \otimes V##. This is again the full set of bi-linear application from the cartesian product ##V^* \times V^* \rightarrow \mathbb R## (which is its own a vector space).

Does it make sense ? Thanks.
 
Last edited:
Physics news on Phys.org
The tensor product exists and is unique (up to isomorphism), so it doesn't matter how you realize it. For example the way you describe it. Or you can start with a basis ##\{e_i\}## for ##V## and consider the vector space with basis ##\{e_i\otimes e_j\}## modulo the subspace generated by ##\{(a+b)\otimes c - a\otimes c - b\otimes c, etc\}##.
 
martinbn said:
Or you can start with a basis ##\{e_i\}## for ##V## and consider the vector space with basis ##\{e_i\otimes e_j\}##.
Yes, but how do you define the product tensors ##e_i\otimes e_j## ? They are defined by how they act on the associated dual-vectors ##\{e^i\}##, i.e. an element ##e_i\otimes e_j## is a bi-linear map from the cartesian product of dual-spaces.
 
cianfa72 said:
Yes, but how do you define the product tensors ##e_i\otimes e_j## ? They are defined by how they act on the associated dual-vectors ##\{e^i\}##, i.e. an element ##e_i\otimes e_j## is a bi-linear map from the cartesian product of dual-spaces.
Call them ##e_{ij}## if you prefer. It is just a set of one element for each pair of basis vectors.
 
  • Like
Likes   Reactions: cianfa72
The tensor product is often described through its Universal Property of linearizing multilinear maps. Given an inner-product, the isomorphism between V, V* becomes a natural one.
 
Was that your question?
 
My question was to understand how the tensor product ##u \otimes v## is defined for vectors ##u,v \in V##. We can define it in terms of bi-duals ##u^{**}## and ##v^{**}## even though it seems to me like a tautology/circular (how is defined the tensor product ##u^{**} \otimes v^{**}##) ?
 
Last edited:
## m \otimes_{R} n## is the linear map on ##M \otimes_{R} N \rightarrow P##, for ##P##; ##R## a ring; possibly a field, in the right category ( V Space, module, etc.), as image of a bilinear map B , that assumes the value## B(m,n)##
It's a matter of diagram-chasing. Maybe @fresh_42 can elaborate after he's done with his European vacation.
 
Last edited:

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
Replies
2
Views
2K