Textbook 'The Physics of Waves': Reason to force us to consider complex solution for harmonic motion?

AI Thread Summary
The discussion centers on the necessity of considering complex solutions for harmonic motion as outlined in "The Physics of Waves." It references a breakdown of time translation in the textbook that leads to the conclusion that complex solutions are required. However, it questions why one cannot simply use the property of irreducible solutions without resorting to complex formalism. The text argues that while complex solutions may simplify the process, they are not strictly necessary. Ultimately, the conversation highlights the implications of complex values in the context of simple harmonic motion.
brettng
Messages
17
Reaction score
0
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

Chapter 1 - Section 1.3 (see attached file)

IMG_8570.png


In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)
 
Physics news on Phys.org
You do not need to use the complex formalism. It is just easier.
 
brettng said:
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)


From page 11 of the book:
1716051640532.png


It is easy to see that a function ##z(t)## that satisfies (1.38) cannot be a real-valued function for all ##t## if there exists a value of ##a## such that ##h(a)## is complex. The author shows on page 12 of the book that if ##z(t)## obeys (1.38) and if ##z(t)## is a solution of the equation of motion for simple harmonic motion (SHM), then ##h(a)## is imaginary for ##a = \pi/(2\omega)##.
 
Thank you so much for your help!!!!!!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top