Textbook 'The Physics of Waves': Reason to force us to consider complex solution for harmonic motion?

AI Thread Summary
The discussion centers on the necessity of considering complex solutions for harmonic motion as outlined in "The Physics of Waves." It references a breakdown of time translation in the textbook that leads to the conclusion that complex solutions are required. However, it questions why one cannot simply use the property of irreducible solutions without resorting to complex formalism. The text argues that while complex solutions may simplify the process, they are not strictly necessary. Ultimately, the conversation highlights the implications of complex values in the context of simple harmonic motion.
brettng
Messages
17
Reaction score
0
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

Chapter 1 - Section 1.3 (see attached file)

IMG_8570.png


In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)
 
Physics news on Phys.org
You do not need to use the complex formalism. It is just easier.
 
brettng said:
TL;DR Summary: The reason to force us consider complex solution for harmonic motion.

Reference textbook “The Physics of Waves” in MIT website:
https://ocw.mit.edu/courses/8-03sc-...es-fall-2016/resources/mit8_03scf16_textbook/

In (1.40), it breaks down the time translation from pi/omega to pi/2omega + pi/2omega; and concludes the square of h(pi/2omega) implying that we need to consider complex solution.

However, what prevents us use the property of irreducible solution and adopt

z(t+pi/omega) = h(pi/omega)z(t)

directly? (And this does not force us to use complex solution!)


From page 11 of the book:
1716051640532.png


It is easy to see that a function ##z(t)## that satisfies (1.38) cannot be a real-valued function for all ##t## if there exists a value of ##a## such that ##h(a)## is complex. The author shows on page 12 of the book that if ##z(t)## obeys (1.38) and if ##z(t)## is a solution of the equation of motion for simple harmonic motion (SHM), then ##h(a)## is imaginary for ##a = \pi/(2\omega)##.
 
Thank you so much for your help!!!!!!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top