The div in cartesian coordinates

Click For Summary
The discussion revolves around understanding the divergence of a vector field \( \mathbf{F} \) in the context of surface integrals and flux calculations. The integral of \( \mathbf{F} \) over a surface can be expressed as the sum of integrals over smaller surfaces, leading to a relationship with the divergence of \( \mathbf{F} \) over a volume. The user seeks clarification on why the book averages the values of \( \mathbf{F}_z \) at the center of the upper and lower plates when calculating flux, rather than using the values directly at the surfaces. There is confusion regarding how to derive the same flux for different surfaces and the approach to obtaining a closed surface. The discussion highlights the complexities of applying divergence in practical examples and the need for a clearer method.
kirito
Messages
77
Reaction score
9
Homework Statement
trying to understand how to derive it ,
Relevant Equations
gauss's theorem
I am currently studying a section from \textit{Electricity and Magnetism} by Purcell, pages 81 and 82, and need some clarification on the following concept. Here’s what I understand so far:

1. The integral of a function $ \mathbf{F} $ over a surface \( S \) is equal to the sum of the integrals of $ \mathbf{F} $ over smaller surfaces \( S_i \):

$$
\int_S \mathbf{F} \cdot d\mathbf{A} = \sum_i \int_{S_i} \mathbf{F} \cdot d\mathbf{A}_i
$$

2. This can be rewritten as:

$$
\sum_i \int_{S_i} \mathbf{F} \cdot d\mathbf{A}_i = \sum_i \int_{S_i} \frac{V_i}{V} \mathbf{F} \cdot d\mathbf{A}
$$

3. This is equal to the integral of the divergence of $ \mathbf{F} $ over a volume \( V \):

$$
\int_V \nabla \cdot \mathbf{F} \, dV
$$

Now, I want to find the divergence of $ \mathbf{F} $ in a book example, specifically the flux through the upper and lower plates in the \( z \)-direction.

In the example, I know that the function $ \mathbf{F} $ changes only in the \( z \)-direction and the area of each surface is \( dx \, dy \). The direction is \( \hat{z} \). Using the second expression above, I have:

$$
\mathbf{F}_z(x,y,z+\Delta z) \, dx \, dy - \mathbf{F}_z(x,y,z) \, dx \, dy = \left( \frac{\partial \mathbf{F}_z}{\partial z} \right) \Delta z \, dx \, dy
$$

However, in the derivation in the book, they look at the average of $ \mathbf{F}_z $ on the top and bottom plates and take the net contribution by considering the difference between them.

Why are they looking at the value of $ \mathbf{F}_z $ at the center of each plate \( \left(x + \frac{dx}{2}, y + \frac{dy}{2}, z \right) \) and at \( \left(x + \frac{dx}{2}, y + \frac{dy}{2}, z + dz \right) \)? I was only following the definition $$ \mathbf{F} \cdot d\mathbf{A}_1 + \mathbf{F} \cdot d\mathbf{A}_2 $$ and so on.
 
Physics news on Phys.org
question.png

in addition I can t see how c has the same flux as a and be I tried to rearrange it to get a closed surface yet got stuck seems like there is a simpler way to approach this
 
kirito said:
View attachment 348625
in addition I can t see how c has the same flux as a and b I tried to rearrange it to get a closed surface yet got stuck seems like there is a simpler way to approach this
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
19
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
1
Views
335