The Electric Field and Potential Energy in a Spring System

Click For Summary
SUMMARY

The forum discussion centers on a physics problem involving the electric field and potential energy in a spring system. Participants emphasize the need for a complete problem statement to provide accurate assistance, as the original poster failed to include essential details. The relevant equations discussed include F = kq/r² and E = kq/r², with a focus on determining the total potential energy of the system. Ultimately, the consensus is that the question likely pertains to finding the total potential energy, with option 2 being suggested as the correct answer.

PREREQUISITES
  • Understanding of electric fields and forces, specifically F = kq/r²
  • Knowledge of potential energy concepts in spring systems
  • Familiarity with equilibrium conditions in mechanical systems
  • Ability to interpret and analyze physics problem statements
NEXT STEPS
  • Study the derivation of potential energy in spring systems
  • Learn about equilibrium conditions for charged masses in electric fields
  • Explore the implications of the superposition principle in electric fields
  • Investigate common mistakes in formulating physics problem statements
USEFUL FOR

Students and educators in physics, particularly those focusing on electromagnetism and mechanics, as well as anyone involved in solving complex physics problems involving electric fields and potential energy.

  • #31
Steve4Physics said:
My apologies. You are just trying to help someone out. Well done for that!

But note, even after 28 posts, we do not know what the actual question is! If at all possible, post the complete question. We shouldn't have to make any assumptions such as "the springs have zero natural length" (@Delta , Post #23); all essential information should be included as part of the question.
Actually, I had gave the whole question and, figure in following picture. You can see the whole question in the image also.
e4e2c5e8-5062-4bbf-94a7-55bbd56e393c-jpeg.jpg
 
Physics news on Phys.org
  • #32
Istiakshovon said:
Actually, I had gave the whole question and, figure in following picture. You can see the whole question in the image also.
Actually I can't see what the question is. I can read only the description of the system. What I can guess is asking (judging from the available options) is "What is the total potential energy of the system?"
 
  • Like
Likes   Reactions: Steve4Physics
  • #33
Delta2 said:
Actually I can't see what the question is. I can read only the description of the system. What I can guess is asking (judging from the available options) is "What is the total potential energy of the system?"
Yes! You got the question..
 
  • #34
Istiakshovon said:
Yes! You got the question..
The correct option according to my opinion is option 2.
 
  • #35
Istiakshovon said:
And, no matter what I choose the site won't show correct answer.
I'm not surprised!

@Delta has (I believe correctly) guessed that the question is 'What is the potential energy?'. But original question does not even mention potential energy!

The meaning of distances X and Y is very unclear. The question-wording does not mention X or Y. And the diagram in Post#1 does not show X and Y properly. (An accurate diagram showing the meanings of X and Y would help a lot.)

Assuming you have posted the full question, then it seems that whoever wrote the original question made a lot of bad mistakes/omissions. Without guesses/assumptions, the question is unanswerable.
 
  • Love
Likes   Reactions: Delta2
  • #36
Steve4Physics said:
I'm not surprised!

@Delta has (I believe correctly) guessed that the question is 'What is the potential energy?'. But original question does not even mention potential energy!

The meaning of distances X and Y is very unclear. The question-wording does not mention X or Y. And the diagram in Post#1 does not show X and Y properly. (An accurate diagram showing the meanings of X and Y would help a lot.)

Assuming you have posted the full question, then it seems that whoever wrote the original question made a lot of bad mistakes/omissions. Without guesses/assumptions, the question is unanswerable.
Yes! That's true. I couldn't understand the question either. But, when I looked at option it was showing like they want us to find Potential Energy...
 
  • Like
Likes   Reactions: Delta2
  • #37
Delta2 said:
The correct option according to my opinion is option 2.
I agree with your opinion and I also agree that the problem could have been stated better. This is what I think is the case. We start in zero electric field with the masses at equilibrium and the springs unstretched. Now we turn the field ON. Say the charged mass experiences an electric force to the right. Both masses will move to the right and we have the new equilibrium configuration as shown in the picture. The key question is how to interpret X and Y. The only interpretation that makes sense in view of the answers is that they represent the extra amount by which each spring is stretched as the charged mass moves to the right. Then one must add up the potential energy changes of the three springs plus the change in electric potential energy.
 
  • Like
  • Love
Likes   Reactions: Istiak, Steve4Physics and Delta2
  • #38
kuruman said:
... We start in zero electric field with the masses at equilibrium and the springs unstretched. Now we turn the field ON. Say the charged mass experiences an electric force to the right. Both masses will move to the right and we have the new equilibrium configuration as shown in the picture. The key question is how to interpret X and Y. The only interpretation that makes sense in view of the answers is that they represent the extra amount by which each spring is stretched as the charged mass moves to the right. Then one must add up the potential energy changes of the three springs plus the change in electric potential energy.
That sounds like the intention of the question's original author.

But the spring on the right gets compressed by an amount X+Y (the same as the distance m moves, which is independent of L). The overall potential energy change (assuming q is positive) is then:
½kX² + ½k’Y² - qE(X+Y) + ½k’’(X+Y)²

This is not in the answer-list. I guess that the answer-list is also wrong!

It may be worth noting that (assuming no losses)
½kX² + ½k’Y² - qE(X+Y) + ½k’’(X+Y)² = 0
because
work done by electric field = gain in elastic potential energy.
or equivalently
loss of electrical potential energy = gain in elastic potential energy.
 
  • Like
  • Love
Likes   Reactions: Istiak and kuruman
  • #39
Steve4Physics said:
That sounds like the intention of the question's original author.

But the spring on the right gets compressed by an amount X+Y (the same as the distance m moves, which is independent of L). The overall potential energy change (assuming q is positive) is then:
½kX² + ½k’Y² - qE(X+Y) + ½k’’(X+Y)²

This is not in the answer-list. I guess that the answer-list is also wrong!

It may be worth noting that (assuming no losses)
½kX² + ½k’Y² - qE(X+Y) + ½k’’(X+Y)² = 0
because
work done by electric field = gain in elastic potential energy.
or equivalently
loss of electrical potential energy = gain in elastic potential energy.
You are absolutely correct, good catch. I derived the same expression but didn't notice the difference between my expression and theirs. It seems that the question's author had one X & Y definition for the first two springs and another for the third spring.
 
  • Like
  • Love
Likes   Reactions: Istiak and Steve4Physics

Similar threads

Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
966
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
894
Replies
10
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
2
Views
1K
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K