The electric field from its electric potential: semicircle

AI Thread Summary
The discussion centers on deriving the electric field (E) from the electric potential (V) for a semicircular charge distribution. The initial assumption that V is constant leads to an incorrect conclusion that E is zero, which is challenged by the need to consider V in a neighborhood around a point rather than just at a specific location. The correct approach involves recognizing that the potential varies in space, necessitating the use of the gradient to find E accurately. Participants emphasize the importance of understanding the potential function over an area rather than at a single point. Ultimately, the conversation highlights the complexities of applying theoretical principles to specific geometrical configurations in electrostatics.
iochoa2016
Messages
13
Reaction score
0
Homework Statement
Strugling to get the E from its V at the centre of the semicircle.
Relevant Equations
V = k*lambda* pi
pi = 3.1415
lambda = charge density
k = 1 / (4*pi*eo)
According to theory I should be able to get the Electric Field (E) from its pOtential (V) by doing the grad (V) so

E = -grad(V), however, V is contant V = k*lambda* pi which results having E =0, but this is not right. What I am missing??
see figure below
e.png
The answer should be Ex = 2*k*lambda / r

This is how I calculate V:

dV = k * dQ/r = k*r*d(theta)*lambda / r
dV = k*lambda * d(theta)
Integrating from 0 to pi

V = k* lambda * pi.
 
Last edited:
Physics news on Phys.org
What makes you say that ##V## is constant ? All you bring forward is an expresssion for (I suppose?) ##V## at the point ##O## ...

##\ ##
 
  • Like
Likes Delta2
k = constant, lambda = constant so V = constant, isn't it?
 
How did you 'calculate' this ##V## ?

##\ ##
 
This is how I calculate V:

dV = k * dQ/r = k*r*d(theta)*lambda / r
dV = k*lambda * d(theta)
Integrating from 0 to pi

V = k* lambda * pi.
 
iochoa2016 said:
k = constant, lambda = constant so V = constant, isn't it?
You are using the expression for the potential at a specific point, but grad is the derivative wrt position. What will be the potential at a nearby point?
 
  • Like
Likes Delta2
found this:
along an axis pointing out the paper passing through the "O",
V = K*lambda*pi * r /(sqrt(r^2+z^2)
 
iochoa2016 said:
found this:
along an axis pointing out the paper passing through the "O",
V = K*lambda*pi * r /(sqrt(r^2+z^2)
Okay, but you can find ##\vec E## at a point directly. To obtain ##\vec E## from ##-\nabla V##, you need to find ##V## in a neighbourhood of the point. This is very unlikely to be easier.
 
Yes, I think you are right. Just triying to use energy to work out the Field.

It was easy for the example below, but not so easy for the semicircle ring.

Screenshot 2022-02-01 225938.png
 
  • #10
iochoa2016 said:
Homework Statement:: Strugling to get the E from its V at the centre of the semicircle.
Relevant Equations:: V = k*lambda* pi
pi = 4.1516
lambda = charge density
k = 1 / (4*pi*eo)
Check your value of ##π## first unless of course you are from Indiana.:smile:
 
  • Haha
  • Like
Likes BvU and iochoa2016
  • #11
Did the problem specifically say to use the potential or did it just ask you to derive the field?
 
  • #12
The gradient is essentially the partial derivatives, and to be able to calculate a partial derivative correctly you need to know the formula of the function in an interval ##(a,b)## and not just at a specific point (0 in this case) . You need to know the formula for the potential in a subarea of the circle in this case since we have a 2D case and not just at the central point of the circle (0,0).
 
Last edited:
Back
Top