The maximum reversible work in thermodynamics (2)

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Thermal dynamics
AI Thread Summary
The discussion focuses on calculating the maximum reversible work in thermodynamics for an open system, emphasizing the concept of available energy and exergy. The equations provided outline the relationships between work, heat transfer, and entropy generation, leading to the formulation of reversible work. Key equations illustrate how to derive the expressions for work and entropy balance, ultimately defining reversible work in terms of heat transfers and enthalpy changes. Participants are encouraged to correct any errors in the shared content for clarity and accuracy. The discussion reinforces the importance of understanding these thermodynamic principles for effective energy management.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Open system, maximum reversible work relative to the dead state in a thermodynamic process. I will share the solution process with everyone, and please correct me if there are any mistakes.
Relevant Equations
Exergy balance
Energy balance
Entropy balance
1712596768815.png

referencesol
The maximum reversible work in thermodynamics
Below is the process of determining the "Available energy" for an open system, shared with everyone as a reference for learning about exergy. If there are any errors in the content, please feel free to correct them.

$$ W_{rev}=W_u^{\nearrow W-P0\cancel{\left( V_2-V_1 \right) }=W}+T0\cdot Sgen=W+T0\cdot Sgen $$
Find## W ## and## T_0\cdot Sgen ## :
$$ eneger\ balance:\ \ Q_{in,net}^{\nearrow ^{\sum{Q_k}}}-W_{out,net}^{\nearrow ^W}+m\left( h_i-h_e \right) =\cancel{\bigtriangleup E_{sys}} $$
$$ \therefore W=\sum{Q_k}+m\left( h_i-h_e \right) $$
$$ entropy\ balance:\ \cancel{\bigtriangleup S_{sys}}=\sum{\frac{Q_k}{T_k}}+m\left( s_i-s_e \right) +Sgen $$
$$\therefore T_0Sgen=-\sum{\frac{\ T_0}{T_k}}Q_k-T0\cdot m\left( s_i-s_e \right) $$
$$ \therefore W_{rev}=\sum{\text{(}1-\frac{\,\,T_0}{T_k}\text{)}}Q_k+m\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right] $$
$$ \therefore w_{rev}=\sum{\text{(}1-\frac{\,\,T_0}{T_k}\text{)}}q_k+\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right] =\text{(}1-\frac{\,\,T_0}{T_1}\text{)}q_1+\text{(}1-\frac{\,\,T_0}{T_2}\text{)}q_2+\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right]…. (Ans:w_{rev})$$
$$ i=w_{rev}-w_u^{\nearrow ^0}=w_{rev}............\left( Ans:i \right) $$
 
Physics news on Phys.org
I agree with the result in the reference you gave.
 
  • Like
Likes tracker890 Source h
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top