The maximum reversible work in thermodynamics (2)

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Thermal dynamics
Click For Summary
The discussion focuses on calculating the maximum reversible work in thermodynamics for an open system, emphasizing the concept of available energy and exergy. The equations provided outline the relationships between work, heat transfer, and entropy generation, leading to the formulation of reversible work. Key equations illustrate how to derive the expressions for work and entropy balance, ultimately defining reversible work in terms of heat transfers and enthalpy changes. Participants are encouraged to correct any errors in the shared content for clarity and accuracy. The discussion reinforces the importance of understanding these thermodynamic principles for effective energy management.
tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
Open system, maximum reversible work relative to the dead state in a thermodynamic process. I will share the solution process with everyone, and please correct me if there are any mistakes.
Relevant Equations
Exergy balance
Energy balance
Entropy balance
1712596768815.png

referencesol
The maximum reversible work in thermodynamics
Below is the process of determining the "Available energy" for an open system, shared with everyone as a reference for learning about exergy. If there are any errors in the content, please feel free to correct them.

$$ W_{rev}=W_u^{\nearrow W-P0\cancel{\left( V_2-V_1 \right) }=W}+T0\cdot Sgen=W+T0\cdot Sgen $$
Find## W ## and## T_0\cdot Sgen ## :
$$ eneger\ balance:\ \ Q_{in,net}^{\nearrow ^{\sum{Q_k}}}-W_{out,net}^{\nearrow ^W}+m\left( h_i-h_e \right) =\cancel{\bigtriangleup E_{sys}} $$
$$ \therefore W=\sum{Q_k}+m\left( h_i-h_e \right) $$
$$ entropy\ balance:\ \cancel{\bigtriangleup S_{sys}}=\sum{\frac{Q_k}{T_k}}+m\left( s_i-s_e \right) +Sgen $$
$$\therefore T_0Sgen=-\sum{\frac{\ T_0}{T_k}}Q_k-T0\cdot m\left( s_i-s_e \right) $$
$$ \therefore W_{rev}=\sum{\text{(}1-\frac{\,\,T_0}{T_k}\text{)}}Q_k+m\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right] $$
$$ \therefore w_{rev}=\sum{\text{(}1-\frac{\,\,T_0}{T_k}\text{)}}q_k+\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right] =\text{(}1-\frac{\,\,T_0}{T_1}\text{)}q_1+\text{(}1-\frac{\,\,T_0}{T_2}\text{)}q_2+\left[ \left( h_i-h_e \right) -T_0\left( s_i-s_e \right) \right]…. (Ans:w_{rev})$$
$$ i=w_{rev}-w_u^{\nearrow ^0}=w_{rev}............\left( Ans:i \right) $$
 
Physics news on Phys.org
I agree with the result in the reference you gave.
 
  • Like
Likes tracker890 Source h
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
422
Replies
49
Views
3K
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
1K
Replies
5
Views
2K