The Nuclear Power Thread

Click For Summary
The discussion centers on the pros and cons of nuclear power, particularly in light of Germany's decision to phase out its nuclear reactors. Advocates argue that nuclear energy is a crucial, low-emission source of electricity that could help mitigate air pollution and combat climate change, while opponents raise concerns about radioactive waste, environmental impacts, and the potential for catastrophic accidents. The debate highlights the need for advancements in nuclear technology, such as safer reactor designs and better waste management solutions. Additionally, there is a philosophical discussion on the societal perception of risk and the value of human life in the context of energy production. Overall, the thread emphasizes the complexity of energy policy and the ongoing need for informed dialogue on nuclear power's role in future energy strategies.
  • #991
Some recent work involved technology developed in the 1950s-1970s.

Westinghouse Astronuclear Laboratory - https://en.wikipedia.org/wiki/Westinghouse_Astronuclear_Laboratory

GE had a similar unit, but I can't find the details at the moment. A fellow graduate student took a job their briefly, about 1 year, but left when work stopped due to cancellation of the program.

A little bit of trivia, "The idea for Ansys was first conceived by John Swanson while working at the Westinghouse Astronuclear Laboratory in the 1960s."
https://en.wikipedia.org/wiki/Ansys#Origins
 
Engineering news on Phys.org
  • #992
@Astronuc I find it hard to believe that the US did not plan for a possible critical infrastructure attack prior to 9/11?

I mean unlike the jihadists the USSR had all kinds of missiles including ICBM's with thermonuclear warheads and I think I can bet my money that at least a dozen were aimed at the largest nuke generating plants.
Well surely no containment could withstand a thermonuke warhead but it should at least withstand a conventional missile with explosives ?
I guess it depends on the type of missile used.
 
  • #993
artis said:
@Astronuc I find it hard to believe that the US did not plan for a possible critical infrastructure attack prior to 9/11?
There was this:
https://interestingengineering.com/crashed-jet-nuclear-reactor-test

artis said:
Well surely no containment could withstand a thermonuke warhead but it should at least withstand a conventional missile with explosives ?
I guess it depends on the type of missile used.
Yeah, protection doesn't need to be absolute, just enough that the attack has to be more extreme than the damage. I live just a few miles from a nuclear plant and if someone blows it up with a nuclear bomb, it won't be fallout from the plant's fuel that kills me.

More likely a state actor attack would go after the electrical distribution, which is unprotected. Different goals.
 
  • #994
artis said:
it should at least withstand a conventional missile with explosives ?
Why? Why should the nuclear containment be built to a different standard than any other structure? Say Hoover Dam? or The Astrodome? The NY Stock Exchange?

I'm not denying that a military attack on nuclear power plant could make quite a mess. But so could an attack on any number of other targets. And the containment buildings are already among the most robust of targets, short of underground bunkers like Mt Weather.
 
  • #995
artis said:
@Astronuc I find it hard to believe that the US did not plan for a possible critical infrastructure attack prior to 9/11?
They did, but not with a large commercial aircraft. Other, more conventional attacks were considered, and protections were in place. I witnessed these in person.

artis said:
I mean unlike the jihadists the USSR had all kinds of missiles including ICBM's with thermonuclear warheads and I think I can bet my money that at least a dozen were aimed at the largest nuke generating plants.
Well surely no containment could withstand a thermonuke warhead but it should at least withstand a conventional missile with explosives ?
In most cases, a typical PWR containment would. Fukushima demonstrated some shortcomings in the older containment systems for BWRs. More modern containment systems are more like PWR containment systems.

artis said:
I guess it depends on the type of missile used.
Of course.

russ_watters said:
Aircraft are mostly light aluminum alloys with some steel and nickel-bearing alloys. The main concern is the spindle from the aircraft engines. However, that has now been considered. New methodologies and design tools have been put in place, and new plants are even more robust than existing plants.

Outside of containment, the concern would be loss of offsite power (LOOP) and loss of heat sink. That is now considered, and to some extent has been demonstrated with some recent natural disasters.
 
  • #996
Just some historical material, a bibliography of LITERATURE ON LIGHT WATER REACTOR (LWR) FUEL AND ABSORBER ROD FABRICATION 1960 - 1976. I believe NSA is Nuclear Science Abstracts.

https://www.osti.gov/servlets/purl/7290655

I remember when some of this stuff was relatively new, and I know and have worked with a number of authors.
 
  • #997
Hopefully, lessons learned.

The US Army tried mobile nuclear power at remote bases 60 years ago, and it didn't go well
https://techxplore.com/news/2021-07-army-mobile-nuclear-power-remote.html

We have learned a lot in 60+ years.

The military boasted that the nuclear reactor there, known as the PM-2A, needed just 44 pounds of uranium to replace a million or more gallons of diesel fuel.

The PM-2A was the third child in a family of eight Army reactors, several of them experiments in portable nuclear power.

AEC, October 1968 - POWER REACTORS IN SMALL PACKAGES
https://www.osti.gov/includes/openn...Atom/Power Reactors in Small Packages V.2.pdf
 
  • #998
Astronuc said:
The US Army tried mobile nuclear power at remote bases 60 years ago, and it didn't go well
It did not.

On the other hand, the Navy's NR-1, with a reactor the same scale, did.
 
  • #999
Vanadium 50 said:
It did not.

On the other hand, the Navy's NR-1, with a reactor the same scale, did.
Thanks for the lead. I never heard of NR-1 before. An internet search did not turn up much about the design. It is probably classified. But I did find this. This and other references hint that it was a scaled down version of the reactors used on submarine warships -- that's where Knolls' expertise was.

https://www.globalsecurity.org/military/systems/ship/systems/nr-1.htm
The preliminary design study Rickover assigned to Knolls. By January 1965 the Schenectady laboratory had determined that a small pressurized-water-reactor propulsion plant was feasible. To no one's surprise, the study showed that the nuclear research submarine would be larger than non-nuclear research submersibles. The reactor compartment had to be a certain size to provide for space and shielding to reduce radiation levels. Shielding posed a special problem; it was not only heavy, but its weight was concentrated in a small area.
 
  • #1,000
It is also worth mentioning that the NR-1 reactor design was 10-15 years after the Army small reactor design. And of course, land is not sea.
 
  • #1,001
anorlunda said:
I never heard of NR-1 before.
Yoiks...
A book about NR-1 by a crewmember, states that it was "unsafe" to go aft of the sail on the surface on the NR-1 when the reactor was operating.
 
  • #1,002
berkeman said:
Yoiks...
Yeah, the same article I linked earlier said.

The reactor compartment had to be a certain size to provide for space and shielding to reduce radiation levels. Shielding posed a special problem; it was not only heavy, but its weight was concentrated in a small area.

The propulsion motors were already outside the hull. I wondered if anyone back then considered moving the reactor away from the inhabited spaces, as in the movie 2001. Water makes a good radiation shield.

1626881390785.png
 
  • #1,003
Vanadium 50 said:
It is also worth mentioning that the NR-1 reactor design was 10-15 years after the Army small reactor design. And of course, land is not sea.
According the AEC booklet, ALCO was the manufacturer of PM-2A (criticality in October 1960), and design was probably done ~1958-1959. ALCO was struggling at the time as their locomotive business cratered in the 1960s. One of the main suppliers of generators and motors, GE, decided to enter the locomotive business as a competitor. Prior to that GE had manufactured custom electric locomotives.

NR-1 was done by the Navy with their BAPL and KAPL laboratories. Their program was generally of higher quality than those of the Army. The limited information indicates the reactor was operational in 1969, so was probably designed ~1967-1968 and constructed ~1968-1969.
 
  • #1,004
16 August 2021 - Turbine tests completed at China's HTR-PM
https://www.world-nuclear-news.org/Articles/Turbine-tests-completed-at-Chinas-HTR-PM

Testing of the steam turbine using non-nuclear steam has been completed at the demonstration high-temperature gas-cooled reactor plant (HTR-PM) at Shidaowan, in China's Shandong province. The twin-unit HTR-PM is scheduled to start operations later this year.

Non-nuclear steam flushing is an important test for nuclear power projects to check the operating quality of steam turbine units and conventional island systems prior to start up. The test verifies the design, manufacturing and installation quality of the steam turbine set.

The steam turbine of the HTR-PM reached operational speed using non-nuclear steam at 8.30pm on 14 August, China Huaneng announced today. It said all parameters, such as power and temperature, attained good standards; the main protection parameters were normal; and the auxiliary engine system operated stably.

Construction of the demonstration HTR-PM plant - which features two small reactors that will drive a single 210 MWe turbine - began in December 2012. Helium gas will be used as the primary circuit coolant. China Huaneng is the lead organisation in the consortium to build the demonstration units (with a 47.5% stake), together with China National Nuclear Corporation subsidiary China Nuclear Engineering Corporation (CNEC) (32.5%) and Tsinghua University's Institute of Nuclear and New Energy Technology (20%), which is the research and development leader. Chinergy, a joint venture of Tsinghua and CNEC, is the main contractor for the nuclear island.
 
  • #1,005
Interesting statement: https://www.royce.ac.uk/collaborate/roadmapping-landscaping/fusion/
The UK is a world leader in fusion technology and has an ambitious programme for a net positive energy spherical tokamak by 2040. The programme is at the concept stage and major opportunities exist to identify, select and develop materials systems for structural and functional requirements which will then be used in the prototype and commercial reactors.

Royce worked with the UK Atomic Energy Authority to develop a focused technology roadmap for baseline and value-add materials for fusion. The output is a clear commentary on the current strengths and opportunities, technology gaps, and investment requirements.

Since there exists an ITER Materials Property Handbook, I'm wondering what we have been doing the last 50 years that we still need to identify materials to accomplish CTRs.
 
  • #1,006
Astronuc said:
Interesting statement: https://www.royce.ac.uk/collaborate/roadmapping-landscaping/fusion/Since there exists an ITER Materials Property Handbook, I'm wondering what we have been doing the last 50 years that we still need to identify materials to accomplish CTRs.
It sounds like, "Fund me for (at least) the next 29 years before judging my success."
 
  • Like
  • Haha
Likes russ_watters, bhobba, etudiant and 2 others
  • #1,007
Cruel, but true.
 
  • #1,008
Meanwhile, back at MIT

In 2015, a group of physicists at MIT did some calculations to rethink how we're approaching the problem of fusion power. High-temperature, nonmetallic superconductors were finally commercially available and could allow the generation of stronger magnetic fields, enabling a simpler, more compact fusion reactor. But the physicists behind the work didn't stop when the calculating was done; instead, they formed a company, Commonwealth Fusion Systems, and set out to put their calculations to the test.

On Tuesday, Commonwealth Fusion Systems announced that it hit a key milestone on its quest to bring a demonstration fusion plant online in 2025. The company used commercial high-temperature superconductors to build a three-meter-tall magnet that could operate stably at a 20-tesla magnetic field strength. The magnet is identical in design to the ones that will contain the plasma at the core of the company's planned reactor.
https://arstechnica.com/science/202...ts-key-milestone-big-superconducting-magnets/

Let's see where we are 4 years from now.
https://news.mit.edu/2021/MIT-CFS-major-advance-toward-fusion-energy-0908

Commonwealth Fusion Systems - https://cfs.energy/
https://cfs.energy/technology

Commonwealth Fusion Systems is collaborating with MIT’s Plasma Science and Fusion Center to build SPARC, the world’s first fusion device that produces plasmas which generate more energy than they consume, becoming the first net-energy fusion machine. SPARC will pave the way for carbon-free, safe, limitless, fusion power. This compact, high-field tokamak will be built with HTS magnets, allowing for a smaller device than previous magnet technology. SPARC is an important step to accelerate the development of commercial fusion energy.

Three and one-half months, or 114 days, left in 2021
https://www.psfc.mit.edu/sparc

The MIT Plasma Science & Fusion Center in collaboration with private fusion startup Commonwealth Fusion Systems (CFS). is developing a conceptual design for SPARC, a compact, high-field, net fusion energy experiment. SPARC would be the size of existing mid-sized fusion devices, but with a much stronger magnetic field. Based on established physics, the device is predicted to produce 50-100 MW of fusion power, achieving fusion gain, Q, greater than 2. Such an experiment would be the first demonstration of net energy gain and would validate the promise of high-field devices built with new superconducting technology. SPARC fits into an overall strategy of speeding up fusion development by using new high-field, high-temperature superconducting (HTS) magnets.

The first step in this roadmap will be to carry out research leading to development of the large, superconducting magnets needed for fusion applications. Once the basic engineering of HTS fusion magnets is established, the next step will be to use that technology to build SPARC. Preliminary analysis has led to a conceptual design with a 1.65m major radius and 0.5m minor radius operating at a toroidal field of 12 T and plasma current of 7.5 MA, producing 50-100 MW of fusion power. Its mission will be to demonstrate break-even fusion production and to demonstrate the integrated engineering of fusion-relevant HTS magnets at scale. While audacious in its goals, SPARC leverages decades of international experience with tokamak physics and is a logical follow-on to the series of high-field fusion experiments built and operated at MIT.
 
  • Like
Likes bhobba and PeterDonis
  • #1,009
From what I understand SPARC is just "another" tokamak which suffers/benefits from most of the features of tokamaks in general, namely the pulsed operation due to plasma induced currents via transformer action, need for a blanket to breed tritium as well as absorb neutrons etc.

Also @Astronuc from your quoted text , I don't understand how SPARC benefits in the toroidal field direction , it says 12 T toroidal field , Iter also has such field strength toroidally, but Iter has a larger size so the curvature bending is less, I can't find the plasma current for Iter so can't compare on that note.
Maybe you can comment on where the potential "upshot" is for SPARC as compared to Iter purely performance wise not considering time/cost etc.?
 
  • #1,010
artis said:
Also @Astronuc from your quoted text , I don't understand how SPARC benefits in the toroidal field direction , it says 12 T toroidal field , Iter also has such field strength toroidally, but Iter has a larger size so the curvature bending is less,
Of hand, I don't know. I'd have to look at the dimensions, but my initial guess would be that SPARC should have lower Surface/Volume ratio, so losses should be less. I'd have to look at the plasma temperatures as well in order to determine the confinement pressure which is limited by the mechanical strength of the structure supporting the magnet(s). I recall that 70 atms pressure was a typical limit, but it might have been increased during the last 35 years.
 
  • #1,011
As was fleetingly mentioned much earlier in the thread, I'm wondering if the enormous amount of effort (money, materials, research, energy) spent on chasing Nuclear fusion, wouldn't be better employed utilising currently available technologies to solve the energy issues... We are literally talking trillions of USD, man-centuries of research, and exotic materials. Yes, Fusion research is nice. But if the technology is still decades away, is this really a good way to be spending these sums of money now?
 
  • Like
Likes russ_watters
  • #1,012
green slime said:
We are literally talking trillions of USD, man-centuries of research, and exotic materials.
Since 1954 through early 2021, the US has spent about $17.1 billion on fusion, or ~$34.1 billion adjusted for inflation. I believe ITER is included in the total funding, but one must peruse the cited references to figure out if that is the case.
http://large.stanford.edu/courses/2021/ph241/margraf1/

green slime said:
But if the technology is still decades away, is this really a good way to be spending these sums of money now?
Previous posts indicate a goal of 4 to 5 years. We'll see in 4 or 5 years.

As for exotic materials, same can be said for fission systems. Many are not so exotic, but the US, UK, EU and Japan, South Korea, and Russia and China, have spent considerable sums on variations of stainless steels and Ni-based alloys (and related alloys), a variety of ceramics, carbon-composites, graphite, and various reactive metal and refractory metal alloys for exotic fission systems, but also for fossil fuel systems. There is a huge array of Ni-based and Co-based alloys for aero-derivative combustion turbines.

Many of the alloys used in nuclear power systems (LWR, CANDU and Gas-cooled reactors) evolved for fossil fuel technology, e.g., austentic and ferritic/martensitic stainless steels. Each of the Gen-IV reactor designs requires some 'exotic' materials.

Ni-based alloys evolved from aerospace technology, e.g., Inconel for the X-plane program. Zirconium-based alloys (e.g., Zircaloys and their successors) are unique to the nuclear industry, although analogs of Zircaloys (Zircadynes) with natural levels of Hf still intact are used in certain applications in the chemical process industry. Similar, Nb, Ta, Mo, W and Re alloys have special applications in a variety of process industries other than nuclear power.

What is unique about nuclear applications is the presence of neutrons and gamma radiation in the operating environment. The radiation, in addition to temperature, affects the alloy microstructure over the course of years, or decades. Neutrons transmute elements (nuclei), sometimes in a beneficial way, but also in deleterious ways. Gammas influence the chemical potentials of atoms in an alloy, and this is an area that is not well-understood.
 
  • Like
  • Informative
Likes green slime, Imager, bhobba and 3 others
  • #1,013
green slime said:
I'm wondering if the enormous amount of effort (money, materials, research, energy) spent on chasing Nuclear fusion, wouldn't be better employed utilising currently available technologies to solve the energy issues... We are literally talking trillions of USD, man-centuries of research, and exotic materials. Yes, Fusion research is nice.

If Fusion is achieved, the payoff is staggering. It is without a doubt a transformative technology like driverless cars will be when finally perfected. Everything is risk/reward. With such a vast reward, the risk for many looks worth it. For me, it is. But of course, opinions will vary. That's the thing about science/technology/engineering - probably best expressed by this amusing video by Sabine Hossenfelder on Climate Change:


It gives us knowledge and tools. What we do with it is up to us.

Thanks
Bill
 
  • Love
  • Like
Likes green slime and Astronuc
  • #1,014
bhobba said:
If Fusion is achieved, the payoff is staggering.

It gives us knowledge and tools. What we do with it is up to us.

Thanks
Bill
If... Undoubtedly. And yet... Research is all fine and dandy. When is it time to have the discussion on the consequences for our society? Researchers gladly fob off morality discussions onto the wider audience, which is gladly ignoring everything but the latest entertainment buzz. Politicians wait until it is a fact. Corporations lobby for their own profiteering.

Once the cat is out of the bag, you cannot put it back. So postponing the discussion until the research is achieved get's us nowhere. If ever achieved, it will be implemented. It will be too late to have the discussion.

What has cheap energy in the form of fossil fuels really meant for life on the planet? If we look beyond the obvious benefits for mankind (for example, increased agricultural output, increased wealth and trade, etc): We see accelerated extinction rates across all wild species, global warming, increased pollution, etc.

Given Joven's paradox, is commercial nuclear fusion really an ambition worth striving for?
https://en.wikipedia.org/wiki/Jevons_paradox
 
  • #1,015
green slime said:
When is it time to have the discussion on the consequences for our society? Researchers gladly fob off morality discussions onto the wider audience, which is gladly ignoring everything but the latest entertainment buzz. Politicians wait until it is a fact. Corporations lobby for their own profiteering.
Frankly, I think this is nonsense. The consequences are always part of the discussion, from the beginning. Pretending like such discussions are not happening all the time is ridiculous. How do you think researchers get funding? The consequences are always part of that discussion

green slime said:
What has cheap energy in the form of fossil fuels really meant for life on the planet?
This is not a particularly relevant question in discussing cheap energy in the form of nuclear fusion.
 
  • Like
Likes bhobba and russ_watters
  • #1,016
Dale said:
Frankly, I think this is nonsense. The consequences are always part of the discussion, from the beginning. Pretending like such discussions are not happening all the time is ridiculous. How do you think researchers get funding? The consequences are always part of that discussion

This is not a particularly relevant question in discussing cheap energy in the form of nuclear fusion.
I see. So where could a layperson read about these discussions?

I'd disagree, with your final statement, but that is your prerogative.
 
  • #1,017
green slime said:
So where could a layperson read about these discussions?
For those specific discussions it depends on the granting agency. If it is a government grant in the USA then those are a matter of public record. You can search the agency’s website for a grant of interest and either directly download the information or get the grant number and ask the agency for the grant application. Under the freedom of information act anyone is entitled to get that information.

green slime said:
I'd disagree, with your final statement, but that is your prerogative.
Sure, you can shrug it off that way, but that is hardly persuasive. You tried to make a "guilt by association" argument, which is a logical fallacy. Your argument, as presented above, is that both fossil fuels and nuclear fusion are "cheap energy", so since fossil fuels do all of these bad things then nuclear fusion is guilty of the same bad things by association. This is a logical fallacy.

Of course, as you say, it is your prerogative to hold a fallacious opinion and to simply disagree with people who find your fallacious opinion to be irrelevant. That doesn't mean that your fallacious opinion represents a valid or persuasive argument.
 
Last edited:
  • Like
Likes bhobba and Astronuc
  • #1,018
@green slime I have to say that I don't think you are looking at this from a perspective. Researching fusion doesn't hold us back from implementing fission nor any other source.
Second if we look just for example at the military spending for example the money spent in Afghanistan which is trillions then on that background fusion is like a poor kid's birthday party.

Not to mention there are countless far more useless projects out there taking up more money.

Also one could argue which is more cost efficient in the long time, to not have CO2 neutral energy sources and invest billions more like trillions in various CO2 limiting techniques (carbon filtration from atmosphere, cloud seeding etc) or forget about CO2 filtration and simply lower it's production in the first place to a level which is manageable. If we wish to attain the second we need to invest those trillions into finding new energy sources, one of them might be fusion.

Truth be told we will spend trillions either way , whether for climate crisis and CO2 mitigation or start now and invest them into new energy sources.
 
  • Like
Likes green slime, bhobba and Astronuc
  • #1,019
bhobba said:
If Fusion is achieved, the payoff is staggering. It is without a doubt a transformative technology like driverless cars will be when finally perfected. Everything is risk/reward. With such a vast reward, the risk for many looks worth it. For me, it is. But of course, opinions will vary.
Well, yeah, in my opinion the "vast reward"/"staggering payoff" is very much in doubt. I really don't understand why people think the payoff is a given. To me it seems more likely at this point that even if fusion can be made to work it will still be a bust.

So can you explain what this "vast reward" is and on what basis you are so confident in it?
 
  • Like
Likes green slime, bhobba, Dale and 1 other person
  • #1,020
russ_watters said:
To me it seems more likely at this point that even if fusion can be made to work it will still be a bust.
Interesting. Why do you think that?
 

Similar threads

Replies
45
Views
7K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 26 ·
Replies
26
Views
7K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
25
Views
5K
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K