Graduate The partial derivative of a function that includes step functions

Click For Summary
The discussion centers on taking the derivative of a function that includes a unit step function, specifically in the context of a decaying integer function, R_j(t). Participants highlight the challenge of differentiating the unit step due to its infinite derivative at the jump point, which leads to confusion about the finiteness of the overall function S. Suggestions include using smooth approximations, such as cubic functions or hyperbolic functions, to create a continuous transition that allows for differentiation. The conversation emphasizes the need for a suitable approximation to handle the discontinuity while maintaining a finite rate of change. Ultimately, the goal is to derive a meaningful expression for how S changes with respect to R.
fahraynk
Messages
185
Reaction score
6
TL;DR
a function which includes step functions, but the step function changes with time
I have this function, and I want to take the derivative. It includes a unit step function where the input changes with time. I am having a hard time taking the derivative because the derivative of the unit step is infinity. Can anyone help me?

##S(t) = \sum_{j=1}^N I(R_j(t)) a_j\\
I(R_j) = \begin{array}{cc}
\{ &
\begin{array}{cc}
0 & R_j < 7 \\
1 & R_j \geq 7
\end{array}
\end{array} \\
a_j \text{ is some known constant}
##
##R_j(t) : t \rightarrow Z## (##R_j## is an integer ##\in [1,10]## which decays over time)

##R_j## starts at ##10## and decays over time, and I can approximate its derivative as : ##\frac{dR_j}{dt}= \frac{R_j(t_2) - R_j(t_1)}{t_2-t_1}##

I would like to take the derivative of ##S##

##\frac{\partial S}{\partial t} = \sum_{j=1}^n (\frac{\partial I_j}{\partial R_j} \frac{\partial R_j}{\partial t})a_j##

But, I read that the derivative of a shifted Heaviside function ##H(x-7)## is the dirac delta function ##\delta(x-7)##. But, this dirac delta function, as I am aware, has an infinite value at ##x=7##.

But, the change in ##S## is definitely finite because ##R## decays linearlly with time, so how can ##S## be infinite? How can I get the derivative of ##S##? I want to show how ##S## changes as a function of ##R##

I think the unit step is just by nature not continuous... is there an approximation I can use for this function that would be continuous?
 
Last edited:
Physics news on Phys.org
You have not specified the functions ##R_1,...,R_N##. They need to be fully specified before we can consider taking derivatives.
 
S is a function which takes on discrete values, and jumps instantaneously between those values. The time derivative is either 0 (between jumps) or doesn't exist (at jumps).

fahraynk said:
But, I read that the derivative of a shifted Heaviside function H(x−7) is the dirac delta function δ(x−7).

Yes, in physics we do that. It's not exactly rigorous but makes a certain kind of sense. The Heaviside function has a vertical line in it. The slope of a vertical line is infinite.

The usual approach to make a statement like the above semi-rigorous is to make a smooth approximation, for instance a function which makes the jump in finite time. And then take the limit as that finite time gets smaller and smaller.

fahraynk said:
But, this dirac delta function, as I am aware, has an infinite value at x=7.

But, the change in S is definitely finite because R decays linearlly with time, so how can S be infinite?

Sure, S is finite. But its rate of change, being a finite change divided by a time interval of 0, is infinite. Again, the slope of a vertical line is infinite.

fahraynk said:
I think the unit step is just by nature not continuous... is there an approximation I can use for this function that would be continuous?

Sure. It's just a question of what approximation would be most convenient to work with. First thing that occurs to me is something like this:
$$\hat I(R_j) = \begin{cases}0, & R_j \lt 7 \\
\frac{R_j-7}{a}, & 7 \leq R_j \lt 7 + a \\
1, & R_j \geq 7+a
\end{cases}$$

That interpolates from 0 to 1 over an interval of width ##a##, with a line of slope ##1/a##. This makes ##\hat I## continuous (I'm using a "hat" to indicate that this is a modified version of your indicator function). But its derivative is still not continuous. ##\hat I## is not differentiable at ##7## or ##7+a##.

So my next thing to try for the interpolation is a cubic, a function of the form ##f(R-7) = a_0 + a_1(R-7) + a_2(R-7)^2 + a_3(R-7)^3## with the conditions that it is 0 and 1 at the two endpoints and has derivative 0 at those two endpoints. With a little bit of algebra that leads me to this:

$$\hat I(R_j) = \begin{cases}0, & R_j \lt 7 \\
\frac{3}{a^2}(R_j - 7)^2 - \frac{2}{a^3}(R_j-7)^3, & 7 \leq R_j \lt 7 + a \\
1, & R_j \geq 7+a
\end{cases}$$

This version goes smoothly from 0 to 1 over the interval and is differentiable everywhere. But the piecewise nature might still cause you some headaches. So the other suggestion I have is to use something like ##\hat I(R_j) = \frac{1}{2} \left [1 + \tanh \left ( \frac {R_j - 7}{a} \right ) \right ]##, which becomes the step function in the limit.

In all cases, you would take the limit as ##a \rightarrow 0##.
 
  • Like
  • Love
Likes DEvens and fahraynk
Thanks @RPinPA ! Great answer. If I use that hyperbolic function, its derivative is something like ##\frac{1}{2\alpha} (1 -tanh^2(\frac{R_j - 7}{\alpha} ))##

Which is a function of ##\alpha##.

If ##R_j## is a measurement, would it make sense to set ##\alpha## to be the average time between measurements?
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K