I The purpose of trigonometric axes in plot of electron clusters, ATLAS

kimi7335
Messages
2
Reaction score
1
TL;DR Summary
Why use trigonometric axes for the plot?
I have been doing some reading on electron reconstruction from proton-proton collisions at CERN. In some of the papers I have read, plots such as the one In the figure are included. What I would like to know is why they have chosen to plot the x and y axes as cos(phi) * tan(theta) and sin(phi) * tan(theta)?
 

Attachments

  • atlas_plot.png
    atlas_plot.png
    60.4 KB · Views: 78
Physics news on Phys.org
Angles can be compared across experiments, physical dimensions cannot. In addition the calorimeter has some non-zero depth, so just plotting x and y would smear out clusters that point away from the interaction point. You could project everything onto a fixed plane, but that's just extra effort for a less useful result.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top