phoenixthoth
- 1,600
- 2
i edited my post but it's not of real consequence now.
U=N union (U\N).
let f be a self mapping of U such that
f(x)=x+1 for x in N and
f(x)=x for x in U\N.
is that your example?
thanks for helping me correct my paper, btw.
ok. let z be any set and consider P(x). suppose z is in P(x). is z a subset of x or not? suppose it is. then that means all elements of z are in x. ok? now take z={a}. since the assumption is that P(x) is the universal set, {a} is in P(x). then all elements of {a} are in x. that means a is in x.Originally posted by matt grime
Erm, in what way did you not understand the counter example to the 'proof' you've got? (the unversal thing isn't at issue here, just the assertion that as {a} is in P(X), that a must be
*an* element of X. a is a collection of elements of X is all that you can deduce. X is an element of P(X) yet X is not in general an element of X!
let me get this straight. is this an equivalent example:Second. You what? By construction the map is injective, find distinct x and y with f(x)=f(y) for f the function defined in my last post. It's elementary to show that it is injective, unless you aer going to argue that I cannot split the universal set into those elements in the inductive set and those not.
U=N union (U\N).
let f be a self mapping of U such that
f(x)=x+1 for x in N and
f(x)=x for x in U\N.
is that your example?
thanks for helping me correct my paper, btw.