Ok. I understand that the set of Lorentz boosts and space rotations is equivalent to the set of Lorentz transformations. I understand that they form a group, but what I cannot seem to grasp is this. What the explicit form of such 4x4 matrices? One needs to know this in order to show that the properties of a group hold. The way I thought they were represented is as follows:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]L_{x}[\beta]=\left(\begin{array}{cccc} \gamma & -\beta \gamma & 0 & 0 \\-\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)[/itex]

The Lorentz boosts in the y and z directions would have similar elements in different entries of the matrix. Is this all I have to work with to show that the Lorentz transformations form a group?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# The set of Lorentz boosts and space rotations form a group

**Physics Forums | Science Articles, Homework Help, Discussion**