discrete*
- 79
- 1
micromass said:Well, a theorem is important not only because it is useful. A theorem can also be important because it has been an open question for a long time, or because it has made an impact on the mathematical world.
I think the continuum hypothesis satisfies that. When studying countability and uncountability, students of mathematics naturally come up with the continuum hypothesis. In fact, every first-year student of mathematics is confronted with the continuum hypothesis in some way. And it's the first statement that is shown to be independent of ZFC, something which is often hard to grasp for students. I don't think there is any mathematician out there which has never heard of the continuum hypothesis, and regardless of it's usefulness, that implies that the theorem is important.
And then there's the fact that Cohen won the Fields medal for his work, which means that the question must have had some importance. The continuum hypothesis was also one of Hilbert's millenium problems, which further adds to it's significance.
There are another set of results that satisfy thesame criteria: the insolvability of the quintic, the parallel postulate, the transcendence of pi and e,...
While these may not seem to be important, their historic significance is overwhelming!
Well said. I agree with every bit.