I Theory of fluctuations in disordered systems

Click For Summary
The discussion centers on the symmetry assumptions in the interaction term of disordered systems as described in a specific academic paper. The author questions the validity of assuming that <na3ndnf2> equals <na3nb2nc>, seeking clarity on the correct symmetry to apply. They reference another work by the same authors, highlighting the need to symmetrize equations based on various exchanges, but express confusion over the rationale behind certain exchanges, particularly b with f. The inquiry emphasizes the complexity of understanding symmetry in the context of fluctuations in disordered systems. Overall, the discussion reflects the challenges in grasping the mathematical underpinnings of these theoretical concepts.
giulio_hep
Messages
104
Reaction score
6
TL;DR
In the computation of the dynamic exponents from the
cubic expansion, I'm asking clarifications and a clear explanation about the interaction term and what are the symmetries in the monomials
I'm reading the https://www.phys.uniroma1.it/fisica/sites/default/files/DOTT_FISICA/MENU/03DOTTORANDI/TesiFin26/Urbani.pdf at paragrph 4.6.2 "The interaction term".

They write a right hand side:

< f(na,nb) f(nc,nd) f(ne,nf) >

and they want to use a symmetry, for example they assume that <na3ndnf2> is equal to <na3nb2nc>

It looks like c = d and b = f at first sight, but which is the correct symmetry really? I can't find an explanation in the previous pages: any idea? Thanks
 
Physics news on Phys.org
Indeed my doubt is somehow reinforced from what I read in "Static replica approach to critical correlations in glassy systems" (same authors, among which again Pierfrancesco Urbani and this year's Nobel Prize, Giorgio Parisi) ref. 12A540-22 paragraph "C. Expression of λ in HNC", page 23, where it is written:

Here we have again to symmetrize Eq. (153) with respect to the exchanges
a ↔ b, c ↔ d, e ↔ f, ab ↔ cd, ab ↔ ef, cd ↔ ef
because these have been used explicitly to derive Eq. (97).

Again, while the exchange of c with d would make sense for symmetry of f(.,.), my intuition was also able to get the exchange of ab with ef, but it is still a mystery for me to understand the exchange of just b with f... or (put together) of df ↔ cb
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...