First of all, I refuse to use $\displaystyle \begin{align*} \mathrm{j} \end{align*}$ to represent the imaginary unit, I use $\displaystyle \begin{align*} \mathrm{i} \end{align*}$. Now...
$\displaystyle \begin{align*} \cos{ \left( \alpha + \beta \right) } &\equiv \cos{ \left( \alpha \right) } \cos{ \left( \beta \right) } - \sin{ \left( \alpha \right) } \sin{ \left( \beta \right) } \end{align*}$
so
$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \end{align*}$
Playing around a bit with Euler's formula we have
$\displaystyle \begin{align*} \mathrm{e}^{\mathrm{i} \, \theta} &= \cos{ \left( \theta \right) } + \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{-\mathrm{i}\,\theta} &= \cos{ \left( -\theta \right) } + \mathrm{i}\sin{ \left( -\theta \right) } \\ &= \cos{ \left( \theta \right) } - \mathrm{i}\sin{ \left( \theta \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\cos{ \left( \theta \right) } \\ \\ \cos{ \left( \theta \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} + \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \cos{ \left( \mathrm{i} \right) } &= \frac{1}{2} \left( \mathrm{e}^{\mathrm{i}^2} + \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= \frac{1}{2} \left( \mathrm{e}^{-1} + \mathrm{e}^{1} \right) \\ &= \cosh{ \left( 1 \right) } \\ \\ \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} &= 2\mathrm{i}\sin{ \left( \theta \right) } \\ \mathrm{i} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) &= -2\sin{ \left( \theta \right) } \\ \sin{ \left( \theta \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}\,\theta} - \mathrm{e}^{-\mathrm{i}\,\theta} \right) \\ \\ \sin{ \left( \mathrm{i} \right) } &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{\mathrm{i}^2} - \mathrm{e}^{-\mathrm{i}^2} \right) \\ &= -\frac{\mathrm{i}}{2} \left( \mathrm{e}^{-1} - \mathrm{e}^{1} \right) \\ &= \frac{\mathrm{i}}{2} \left( \mathrm{e}^{1} - \mathrm{e}^{-1} \right) \\ &= \mathrm{i}\sinh{ \left( 1 \right) } \end{align*}$
Thus:
$\displaystyle \begin{align*} \cos{ \left( 1 + \mathrm{i} \right) } &= \cos{ \left( 1 \right) } \cos{ \left( \mathrm{i} \right) } - \sin{ \left( 1 \right) } \sin{ \left( \mathrm{i} \right) } \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \sin{ \left( 1 \right) } \left[ \mathrm{i}\sinh{ \left( 1 \right) } \right] \\ &= \cos{ \left( 1 \right) } \cosh{ \left( 1 \right) } - \mathrm{i} \sin{ \left( 1 \right) } \sinh{ \left( 1 \right) } \end{align*}$