Thermal exchange between warm object and ideal gas

AI Thread Summary
The discussion focuses on the thermal exchange between a warm object and an ideal gas, emphasizing the conservation of internal energy. It establishes that the total variation of internal energy is zero, leading to the conclusion that the heat lost by the object equals the heat gained by the gas. The equations derived show the relationship between the equilibrium temperature, the specific heat capacities, and the initial temperatures of both the gas and the object. The participants confirm that considering the entire system, including external work, is essential for accurate calculations. The final formula for equilibrium temperature reflects the contributions from both the gas and the object, validating the approach taken.
JayBi
Messages
2
Reaction score
0
Homework Statement
A warm object of mass m and thermal and specific heat c, with temperature T2, is inserted in an adiabatic chamber filled with 1 mol of an ideal (monoatomic) gas at a temperature T1 and atmospheric pressure.
Let T2 > T1.
The chamber has a massless piston, moving without friction.
Considering neglectable the volume of the object, find the equilibrium temperature.
Relevant Equations
1st principle of thermodynamics
Equation of state of an ideal gas
The total variation of internal energy states
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##

My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks
 
Physics news on Phys.org
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
 
vela said:
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
Thank you Vela!
My doubt started following the first principle, that links internal energy, not heat directly.
Considering the whole system (gas + body + external) seemed the right approach.
Thank you
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top