Thermal exchange between warm object and ideal gas

Click For Summary
SUMMARY

The discussion centers on the thermal exchange between a warm object and an ideal gas, specifically analyzing the conservation of internal energy. The equations derived indicate that the total variation of internal energy is zero, leading to the conclusion that the heat released by the object is equal to the heat absorbed by the gas, expressed mathematically as Q_gas = n (c_v + R) (T_eq - T_1). The final equilibrium temperature is calculated using T_eq = (n c_p T_1 + c m T_2) / (n c_p + c m). The conservation of internal energy applies to the entire system, including the object, gas, and external work.

PREREQUISITES
  • Understanding of thermodynamics principles, particularly the first law of thermodynamics.
  • Familiarity with internal energy concepts and equations related to ideal gases.
  • Knowledge of specific heat capacities (c_v and c_p) and their roles in thermal processes.
  • Basic algebra skills for manipulating thermodynamic equations.
NEXT STEPS
  • Study the first law of thermodynamics in detail, focusing on internal energy and heat transfer.
  • Explore the differences between specific heat capacities c_v and c_p and their applications in thermodynamic calculations.
  • Learn about the ideal gas law and its implications for thermal exchanges in closed systems.
  • Investigate real-world applications of thermal exchange principles in engineering and physical sciences.
USEFUL FOR

This discussion is beneficial for students and professionals in physics, engineering, and thermodynamics, particularly those interested in heat transfer and energy conservation in thermal systems.

JayBi
Messages
2
Reaction score
0
Homework Statement
A warm object of mass m and thermal and specific heat c, with temperature T2, is inserted in an adiabatic chamber filled with 1 mol of an ideal (monoatomic) gas at a temperature T1 and atmospheric pressure.
Let T2 > T1.
The chamber has a massless piston, moving without friction.
Considering neglectable the volume of the object, find the equilibrium temperature.
Relevant Equations
1st principle of thermodynamics
Equation of state of an ideal gas
The total variation of internal energy states
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##

My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks
 
Physics news on Phys.org
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
 
  • Like
Likes   Reactions: JayBi
vela said:
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
Thank you Vela!
My doubt started following the first principle, that links internal energy, not heat directly.
Considering the whole system (gas + body + external) seemed the right approach.
Thank you
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K