Thermal exchange between warm object and ideal gas

AI Thread Summary
The discussion focuses on the thermal exchange between a warm object and an ideal gas, emphasizing the conservation of internal energy. It establishes that the total variation of internal energy is zero, leading to the conclusion that the heat lost by the object equals the heat gained by the gas. The equations derived show the relationship between the equilibrium temperature, the specific heat capacities, and the initial temperatures of both the gas and the object. The participants confirm that considering the entire system, including external work, is essential for accurate calculations. The final formula for equilibrium temperature reflects the contributions from both the gas and the object, validating the approach taken.
JayBi
Messages
2
Reaction score
0
Homework Statement
A warm object of mass m and thermal and specific heat c, with temperature T2, is inserted in an adiabatic chamber filled with 1 mol of an ideal (monoatomic) gas at a temperature T1 and atmospheric pressure.
Let T2 > T1.
The chamber has a massless piston, moving without friction.
Considering neglectable the volume of the object, find the equilibrium temperature.
Relevant Equations
1st principle of thermodynamics
Equation of state of an ideal gas
The total variation of internal energy states
##\Delta U_{tot} = 0##
##\Delta U_{tot} = \Delta U_{ext} + \Delta U_{gas} + \Delta U_{obj}##
with:
##\Delta U_{ext} = Q_{ext} - W_{ext} = -W_{ext}##
##\Delta U_{gas} = Q_{gas} - W_{gas} = Q_{gas} - ( - W_{ext} ) = Q_{gas} + W_{ext}##
##\Delta U_{obj} = Q_{obj} - W_{obj} = Q_{obj}##
hence
##0 = ( - W_{ext} ) + ( Q_{gas} + W_{ext} ) + ( Q_{obj})##
##0 = Q_{gas} + Q_{obj}##
Being
##\Delta U_gas = n c_v (T_eq - 1) = Q_gas + W_ext = Q_gas - p_atm (V_eq - V_1) = Q_gas - n R (T_eq - T1)##
We get
##Q_{gas} = n (cv + R) (T_{eq} - T_1) = n cp (T_{eq} - T_1)##
And being
##Q_{obj} = c m (T_eq - T_2)##
We finally get
##T_{eq} = \frac{n cp T_1 + c m T_2}{n cp + c m}##

My question is: the conservation of the internal energy applies as I showed or should I use it for the object and the gas only:
##\Delta U_{gas} + \Delta U_{ext} = 0##
##n cv (T_{eq} - T_1) + c m (T_eq - T_2) = 0##
Arriving at:
##T_{eq} = \frac{n cv T_1 + c m T_2}{n cv + c m}##
With similar steps?
Thanks
 
Physics news on Phys.org
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
 
vela said:
Just follow where the energy goes: the heat released by the object can go to either heating the gas or allowing the gas to do work on the surroundings. Mathematically, we have
\begin{align*}-Q_{\rm obj}&=Q_{\rm gas}\\
-mc(T_{\rm eq}-T_2) &= \underbrace{nC_V(T_{\rm eq}-T_1)}_{\Delta U_{\rm gas}} + \underbrace{p (V_{\rm eq} - V_1)}_{W_{\rm gas}} \\
&= nC_V(T_{\rm eq}-T_1) + n R (T_{\rm eq} - T_1)\\
&= nC_p(T_{\rm eq}-T_1),
\end{align*} which is exactly what you came up with in your first approach.
Thank you Vela!
My doubt started following the first principle, that links internal energy, not heat directly.
Considering the whole system (gas + body + external) seemed the right approach.
Thank you
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top