Engineering Thermodynamics calculation: Flashing water at 75C

AI Thread Summary
The discussion focuses on calculating the amount of water vaporized when flashing water at 75°C to a constant pressure of 0.27 bar, resulting in a temperature of 67°C. The participants apply the first law of thermodynamics and use enthalpy values to determine that approximately 1.4% of the liquid water vaporizes. There is also a consideration of how this calculation might change if the water were replaced with milk, which contains 87% water. The conversation highlights the importance of energy balance in these calculations and suggests that further experiments could yield more accurate results. Overall, the thread emphasizes the complexities involved in thermodynamic calculations for different substances.
Keeskwaak
Messages
11
Reaction score
2
Homework Statement
need to figure this out and why
Relevant Equations
m = Q / (h_vap - h_liq)
Hello all,
For a project I really need to know some number i can't seem to produce myself.

we are flashing water @75 degrees Celsius, the water after flash-cooling is 67 degrees constant pressure is 0.27 bar (absolute) flow rate is 15000 KG/per hour.

how much water is vaporized?

Help is much appreciated
 
Physics news on Phys.org
Do you mean in a vacuum flash cooling system like this one?

1690989787174.png

https://www.dekkervacuum.com/flash-cooling/
 
Yes, though its i think somewhat bigger, it features a vacuum pump and a condenser to maintain a low pressure, Basic goal is oe eliminate dissolved oxygen and air bubbles, i need to figure out how much volume is lost
 
What is the pressure before the flash, atmospheric?
 
Chestermiller said:
What is the pressure before the flash, atmospheric?
Yes its almost atmospheric
 
Applying the open system (control volume) version of the 1st law of thermodynamics and assuming an adiabatic flash, we have $$\Delta h=0$$
State 1: 1 kg liquid water at 75 C

State 2:
x kg saturate water vapor at 0.27 bar and 67 C
(1-x) kg saturated liquid water at 0.27 bar and 67 C

From the steam tables, what is the enthalpy of liquid water at 75 C and 67C?
What is the enthalpy of saturated water vapor at 67 C?
 
enthalpy for Liquid water @75C is 313.97, @67C is 280.45
the enthalpy of saturated water vapor at 67C is 2620.96
 
Keeskwaak said:
enthalpy for Liquid water @75C is 313.97, @67C is 280.45
the enthalpy of saturated water vapor at 67C is 2620.96
So what is the parameter x equal to ?
 
I'm so sorry but I don't get it
 
  • #10
$$\Delta h=280.45(1-x)+2620.96x-313.97=0$$
 
  • #11
but how does that work and how to translate it to 15000kg/h?
 
  • #12
Keeskwaak said:
but how does that work and how to translate it to 15000kg/h?
This tells you the fraction of water that is lost to vapor.
 
  • #13
Chestermiller said:
This tells you the fraction of water that is lost to vapor.
As much as i appreciate your help and answers, I still can't make the equation
 
  • #14
Keeskwaak said:
As much as i appreciate your help and answers, I still can't make the equation
x=0.014, so 1.4% of the liquid vaporizes.
 
  • #15
Chestermiller said:
x=0.014, so 1.4% of the liquid vaporizes.
I still cant make the equation but I see what you are doing, you make a energy balance.
Next question to make it more interesting: what if the water was milk? I don't know the Enthalpy numers for milk. but I do know the water in milk is 87%, and because the condensate is clear (mostly) is it safe to asume the water vapor will also be 87% of 1.4%?
The water inlet is 87% of 15000kg? or am i making a to short cut?
 
  • #16
Keeskwaak said:
I still cant make the equation but I see what you are doing, you make a energy balance.
Next question to make it more interesting: what if the water was milk? I don't know the Enthalpy numers for milk. but I do know the water in milk is 87%, and because the condensate is clear (mostly) is it safe to asume the water vapor will also be 87% of 1.4%?
The water inlet is 87% of 15000kg? or am i making a to short cut?
To be conservative, I would just use the 1.4%.
 
  • #17
Chestermiller said:
To be conservative, I would just use the 1.4%.
yes to be on the safe side, but that is no science
 
  • #18
Keeskwaak said:
yes to be on the safe side, but that is no science
Then go out and spend some money to do some VLE experiments on milk to get a 13% more accurate answer. Have you considered the effect off Jupiter's gravity on the system since "science" tells us that that might have some (tiny) effect too.
 
  • #19
Chestermiller said:
Then go out and spend some money to do some VLE experiments on milk to get a 13% more accurate answer. Have you considered the effect off Jupiter's gravity on the system since "science" tells us that that might have some (tiny) effect too.
Hi,
No pun and no disrespect intended, as I mentioned before: "Next question to make it more interesting", its just that.
i was not asking for a accurate answer, maybe just how someone else looks at this.
 
Back
Top