Explore Polarized Light: Tilted Polarizer Effects

Click For Summary
Tilting a polarizer affects the intensity of light passing through but does not change the polarization direction of the transmitted light. When polarized light passes through a tilted polarizer, it may still emerge polarized, but at a different angle, resulting in reduced intensity. The cross-section of a polarizer does not simply consist of slits; various materials and geometries can be used to achieve polarization. Polarizers work by allowing light of a certain polarization to pass while blocking others, which is different from the slit analogy often used. Overall, the behavior of light through polarizers is more complex than basic models suggest.
Boomzxc
Messages
25
Reaction score
0
https://www.dropbox.com/s/t5lv4nlunn35ok8/phy1.PNG?dl=0
https://www.dropbox.com/s/ktc9pj7qmqhejrv/phy2.PNG?dl=0
https://www.dropbox.com/s/qbjz1p1gokvsgj2/Capture3.PNG?dl=0

I googled "polarizer film diagram" and "malu's law" and "polarizer physics" to obtain the pictures in this thread.
I understand we usually study polarised light phenomena by rotating polaroids.

I am curious about this : What would happen, or what would be the outcome/result if the first or second Polaroid in a setup shown in the above two images, is *tilted* forward or backwards? as in, the Polaroid is firm on it's base, just that it is *tilted* either forward or backwards. What would be the outcome when polarised light, and unpolarised light pass through the Polaroid?
Will light still pass through, or be polarised, through tilted Polaroid(s)?
Or is it just that Intensity will be affected, or Polarised light will not emerge straight, and rather at an angle?
Will light still be polarised the same way and angle as a untilted Polaroid(such as the base perpendicular to the table, untilted), just that less light is passed through?

Sorry I do not have a lab or the required gear to experiment this myself.Secondary question :
How does the cross section of a Polariser looks like; how does a Polariser polarise light?
Isn't light polarised by passing through tiny vertical slits? Why is light not polarised through the tiny slits of a diffraction grating?
Is a Polariser made up of many sheets of polaroids?

A very large and warm Thank-you to all that have replied
 
Last edited:
Science news on Phys.org
Boomzxc said:
What would happen, or what would be the outcome/result if the first or second Polaroid in a setup shown in the above two images, is *tilted* forward or backwards? <snip>
Secondary question :
How does the cross section of a Polariser looks like; how does a Polariser polarise light?
Isn't light polarised by passing through tiny vertical slits? Why is light not polarised through the tiny slits of a diffraction grating?
Is a Polariser made up of many sheets of polaroids?

The answer to your first question is complicated, the specifics depend entirely on the surface (which is why normal incidence is used in class). For what it's worth, here's a comprehensive report on the subject:

https://repository.tudelft.nl/islan...92-4960-b0fe-5ccbc95da562?collection=research

(you want chapter 3).

As for the second question, that isn't a good analogy. If anything, the polarization component *perpendicular* to the slits passes through, while the polarization component parallel is blocked. To be sure, far-infrared polarizers are indeed parallel wires. However, polarizers can be constructed from a variety of materials, not just sheets of Polaroid: certain prism geometries separate orthogonal polarizations.
 
  • Like
Likes Boomzxc
Andy Resnick said:
As for the second question, that isn't a good analogy.
If a polariser consisted of narrow slits then a 'perfect' polariser would need to have infinitely thin slits - which would admit no light. In fact, the energy from an unpolarised source through a perfect polariser only drops by half.
 
sophiecentaur said:
If a polariser consisted of narrow slits then a 'perfect' polariser would need to have infinitely thin slits - which would admit no light. In fact, the energy from an unpolarised source through a perfect polariser only drops by half.

In the case of FIR polarizers, the wire width and spacing are subwavelength- not a big deal when the wavelength is 100 um.
 
Andy Resnick said:
In the case of FIR polarizers, the wire width and spacing are subwavelength- not a big deal when the wavelength is 100 um.
I am a tad confused here. A good microwave polariser can be made in a similar way with a grid of parallel wires (spaced by perhaps a tenth of a wavelength, IIRC). In that case, currents that are induced in the wires that will reflect the wave components that are parallel with the wires and the spaces in between the wires have no induced currents so the wave component passes through. So the transmitted polarisation is normal to the direction of the slots. Is the action of a FIR polariser different from that?
 
sophiecentaur said:
Is the action of a FIR polariser different from that?

nope- exactly the same. Did I say otherwise?
 
Andy Resnick said:
nope- exactly the same. Did I say otherwise?
No you didn't say otherwise. It's just that the 'slots' are not in the same orientation as the resulting polarisation. That could be regarded as counter-intuitive and certainly doesn't tie in with the over simplified explanations that we see in textbooks. Also, I thought polaroids worked on absorption of the other polarisation and that is not how an RF polariser works.
It is all more complicated that at first sight and what pictures of waves on ropes and slots in metal sheets would imply.
 

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
4
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 80 ·
3
Replies
80
Views
7K
  • · Replies 5 ·
Replies
5
Views
4K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K