I Time-Dependent Lagrangian Leads to Time Dilation?

stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
This is just something unexpected that I noticed recently, and I hadn't heard anyone mention it before.

The relativistic Lagrangian for a particle moving under a scalar potential ##\Phi## is this:

##L = \frac{1}{2} m g_{\mu \nu} \dfrac{dx^\mu}{d\tau} \dfrac{dx^\nu}{d\tau} - \Phi##

This leads to the equations of motion:

##m \dfrac{d^2 x^\mu}{d\tau^2} = - \partial^\mu \Phi##

So that's just the relativist generalization of Newton's ##F = m A##, with ##F = -\nabla \Phi##. However, a difference is that it's a 4-D equation, rather than a 3-D equation. So let's look at just the 0th component, with ##x^0 = t##:

##m \dfrac{d^2 t}{d\tau^2} = - \dfrac{\partial \Phi}{\partial t}##

This is truly unexpected (to me). When there is no potential, ##\dfrac{dt}{d\tau}## is the time dilation factor ##\gamma##. The above equation seems to be saying that time dilation depends not only on velocity (or spacetime curvature, if you consider General Relativity, which I'm not doing here) but also on the potential. So even a particle at rest will experience time dilation if it is in a time-varying potential.

Another thing that is surprising is that this time dilation can be positive or negative. So if a particle starts out at rest, with ##\dfrac{dt}{d\tau} = 1##, then a negative value for ##- \dfrac{\partial \Phi}{\partial t}## will lead to the particle having ##\dfrac{dt}{d\tau} \gt 1##. So time runs faster for the particle, rather than slower.

Is this a real effect? My guess is that it wouldn't be easy to test because there are so few scalar fields (the only one I know of is the Higgs field), and they are not as easily manipulated as the electromagnetic field.
 
  • Wow
  • Like
Likes Demystifier and Dale
Physics news on Phys.org
I have studied this stuff in more detail in
https://arxiv.org/abs/1006.1986
and published as a part of a book chapter
https://arxiv.org/abs/1205.1992

The scalar potential can be viewed as a dynamical mass squared, which can become negative so that particle can exceed the velocity of light.

But note that your parameter ##\tau##, called ##s## in my work, is not the usual proper time. Hence, the potential does not modify the time dilation. It only modifies the relation between proper time and this parameter.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top