I Time-Dependent Lagrangian Leads to Time Dilation?

Click For Summary
The discussion explores the implications of the relativistic Lagrangian for a particle in a scalar potential, revealing that time dilation is influenced not only by velocity but also by the potential itself. The equations of motion indicate that even a particle at rest can experience time dilation in a time-varying potential, leading to unexpected scenarios where time may run faster or slower. This phenomenon suggests that time dilation could be positive or negative depending on the nature of the potential. The author notes the challenge of testing this effect due to the limited availability of scalar fields, such as the Higgs field. Ultimately, the potential modifies the relationship between proper time and the parameter used in the equations, rather than altering the time dilation itself.
stevendaryl
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
8,943
Reaction score
2,954
This is just something unexpected that I noticed recently, and I hadn't heard anyone mention it before.

The relativistic Lagrangian for a particle moving under a scalar potential ##\Phi## is this:

##L = \frac{1}{2} m g_{\mu \nu} \dfrac{dx^\mu}{d\tau} \dfrac{dx^\nu}{d\tau} - \Phi##

This leads to the equations of motion:

##m \dfrac{d^2 x^\mu}{d\tau^2} = - \partial^\mu \Phi##

So that's just the relativist generalization of Newton's ##F = m A##, with ##F = -\nabla \Phi##. However, a difference is that it's a 4-D equation, rather than a 3-D equation. So let's look at just the 0th component, with ##x^0 = t##:

##m \dfrac{d^2 t}{d\tau^2} = - \dfrac{\partial \Phi}{\partial t}##

This is truly unexpected (to me). When there is no potential, ##\dfrac{dt}{d\tau}## is the time dilation factor ##\gamma##. The above equation seems to be saying that time dilation depends not only on velocity (or spacetime curvature, if you consider General Relativity, which I'm not doing here) but also on the potential. So even a particle at rest will experience time dilation if it is in a time-varying potential.

Another thing that is surprising is that this time dilation can be positive or negative. So if a particle starts out at rest, with ##\dfrac{dt}{d\tau} = 1##, then a negative value for ##- \dfrac{\partial \Phi}{\partial t}## will lead to the particle having ##\dfrac{dt}{d\tau} \gt 1##. So time runs faster for the particle, rather than slower.

Is this a real effect? My guess is that it wouldn't be easy to test because there are so few scalar fields (the only one I know of is the Higgs field), and they are not as easily manipulated as the electromagnetic field.
 
  • Wow
  • Like
Likes Demystifier and Dale
Physics news on Phys.org
I have studied this stuff in more detail in
https://arxiv.org/abs/1006.1986
and published as a part of a book chapter
https://arxiv.org/abs/1205.1992

The scalar potential can be viewed as a dynamical mass squared, which can become negative so that particle can exceed the velocity of light.

But note that your parameter ##\tau##, called ##s## in my work, is not the usual proper time. Hence, the potential does not modify the time dilation. It only modifies the relation between proper time and this parameter.
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
690
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K