Time dependent perturbation theory (Berry phase)

dRic2
Gold Member
Messages
887
Reaction score
225
Homework Statement
An Hamiltonian ##H## is characterized by a parameter ##\lambda(t)## which is varied with time. In the adiabatic approximation the solution is given by
$$\ket{\psi(t)} = e^{i\phi}e^{-i\gamma}\ket{n(t)}$$
with ##\phi## the Berry phase and ##\gamma## the dynamical phase.

Carrying the the adiabatic perturbation theory to the next order in ##\lambda##, that is ##\dot \lambda##, assume that the solution is given by:
$$\ket{\psi(t)} = e^{i\phi}e^{-i\gamma}[\ket{n(t)} + \dot \lambda \ket{\delta n}]$$
where ##\ket{\delta n}## is to be determined. We arlerady know that the solution satisfy the Schrodinger equation to the order zero in ##\dot \lambda##. Show that:
$$(E_n - H_{\lambda})\ket{\delta n} = -i \hbar (\partial_{\lambda} + i A_n) \ket{n}$$.
##A_n## is the Berry connection ##\bra{n} i \partial_{\lambda} \ket{n}##.
Relevant Equations
Berry phase $$\phi = \int_{t_0}^{t} d\tau A_n(\tau)$$
Dynamical phase $$\gamma = \int_{t_0}^{t} d\tau E_n(\tau)$$
If I plug the solution into the Schrodinger equation I get
$$(i \hbar \partial_t - H)\ket{\psi} = 0$$
Since I know that the zeroth-order expansion is lambda is already a solution I think this is equal to
$$(i \hbar \partial_t - H)e^{i\phi} e^{-i\gamma}\ket{\delta n} = 0$$
If now I carry on with the differentiation I get the solution, except for the fact that I have ##\delta n## everywhere, while on the right-hand side the should be a ##\ket{n}##. So, either my assumption is wrong (why?), or I am missing something. I've been thinking for 2 days...

(the ##\ddot \lambda## term is dropped)

Thanks,
Ric
 
Last edited:
Physics news on Phys.org
Solved it. For anyone interested:

dRic2 said:
Since I know that the zeroth-order expansion is lambda is already a solution I think this is equal to
This is plain wrong and it makes no sense. It would correspond to adding 0 to my previous solution which is true for the zeroth-order, but then it will remain true for the zeroth-order and not for the first order. I was confused by the sentence "We already know that the solution satisfies the Schrodinger equation to the order zero".

The problem is actually a very simple one: just performing all the required derivatives in ##(i\hbar \partial_t -H) \ket{\psi} = 0##, simplifying the expression with simple algebric manipulations, and remembering that ##\frac 1 {\dot \lambda} \partial_t = \partial_\lambda##, one gets the desired result.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...

Similar threads

Back
Top