Time dependent perturbation theory (Berry phase)

dRic2
Gold Member
Messages
887
Reaction score
225
Homework Statement
An Hamiltonian ##H## is characterized by a parameter ##\lambda(t)## which is varied with time. In the adiabatic approximation the solution is given by
$$\ket{\psi(t)} = e^{i\phi}e^{-i\gamma}\ket{n(t)}$$
with ##\phi## the Berry phase and ##\gamma## the dynamical phase.

Carrying the the adiabatic perturbation theory to the next order in ##\lambda##, that is ##\dot \lambda##, assume that the solution is given by:
$$\ket{\psi(t)} = e^{i\phi}e^{-i\gamma}[\ket{n(t)} + \dot \lambda \ket{\delta n}]$$
where ##\ket{\delta n}## is to be determined. We arlerady know that the solution satisfy the Schrodinger equation to the order zero in ##\dot \lambda##. Show that:
$$(E_n - H_{\lambda})\ket{\delta n} = -i \hbar (\partial_{\lambda} + i A_n) \ket{n}$$.
##A_n## is the Berry connection ##\bra{n} i \partial_{\lambda} \ket{n}##.
Relevant Equations
Berry phase $$\phi = \int_{t_0}^{t} d\tau A_n(\tau)$$
Dynamical phase $$\gamma = \int_{t_0}^{t} d\tau E_n(\tau)$$
If I plug the solution into the Schrodinger equation I get
$$(i \hbar \partial_t - H)\ket{\psi} = 0$$
Since I know that the zeroth-order expansion is lambda is already a solution I think this is equal to
$$(i \hbar \partial_t - H)e^{i\phi} e^{-i\gamma}\ket{\delta n} = 0$$
If now I carry on with the differentiation I get the solution, except for the fact that I have ##\delta n## everywhere, while on the right-hand side the should be a ##\ket{n}##. So, either my assumption is wrong (why?), or I am missing something. I've been thinking for 2 days...

(the ##\ddot \lambda## term is dropped)

Thanks,
Ric
 
Last edited:
Physics news on Phys.org
Solved it. For anyone interested:

dRic2 said:
Since I know that the zeroth-order expansion is lambda is already a solution I think this is equal to
This is plain wrong and it makes no sense. It would correspond to adding 0 to my previous solution which is true for the zeroth-order, but then it will remain true for the zeroth-order and not for the first order. I was confused by the sentence "We already know that the solution satisfies the Schrodinger equation to the order zero".

The problem is actually a very simple one: just performing all the required derivatives in ##(i\hbar \partial_t -H) \ket{\psi} = 0##, simplifying the expression with simple algebric manipulations, and remembering that ##\frac 1 {\dot \lambda} \partial_t = \partial_\lambda##, one gets the desired result.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top