# Time dependent perturbation theory

• I
Hi.
I have been looking at some notes for time dependent perturbation theory. The equation for the transition probability involves the matrix element < f | H | i > where f is the final state , i is the initial state and H is the perturbation switched on at t=0. If H is a constant , ie. just a number then it can be taken outside the bracket leaving H < f | i > but the final and initial states are orthonormal meaning the bracket is zero for all transitions. So a constant perturbation produces no change in state ?
Have i got all this right ? If not , where am i going wrong ?
Thanks

DrSteve
Gold Member
Hi.
I have been looking at some notes for time dependent perturbation theory. The equation for the transition probability involves the matrix element < f | H | i > where f is the final state , i is the initial state and H is the perturbation switched on at t=0. If H is a constant , ie. just a number then it can be taken outside the bracket leaving H < f | i > but the final and initial states are orthonormal meaning the bracket is zero for all transitions. So a constant perturbation produces no change in state ?
Have i got all this right ? If not , where am i going wrong ?
Thanks
Looks right to me.

• dyn
vanhees71
• 