B To calculate the polar unit vectors using rotated coordinates

Click For Summary
The discussion centers on the challenge of deriving polar unit vectors from rotated Cartesian coordinates. The equations for rotated coordinates are provided, but the connection to polar coordinates is not straightforward. Attempts to manipulate the equations lead to contradictions, indicating that the derivation process is more complex than initially thought. A request for hints suggests focusing on specific angles to simplify the transition from Cartesian to polar coordinates. Ultimately, the discussion highlights the intricacies involved in this mathematical transformation.
brotherbobby
Messages
750
Reaction score
169
TL;DR
To derive the polar unit vectors $$\boxed{\begin{align*}\hat{\rho}&=\cos\theta \;\hat{i}+\sin\theta \;{\hat j}\\

\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j

\end{align*}}\quad\quad\large{\mathbf{(b)}}$$

using coordinates of a point under rotation : $$\begin{align*}x'&=\cos\theta \;x+\sin\theta \;y\\

y'&=-\sin\theta \; x+\cos\theta \; y

\end{align*}\quad\quad\large{\mathbf{(a)}}$$
1726582830959.png
We know that if cartesian coordinates ##(x,y)## (see figure alongside) are rotated to ##(x',y')## about the origin by an angle ##\theta## counter-clockwise as shown, the rotated coordinates are given by $$\begin{align*}x'&=\cos\theta \;x+\sin\theta \;y\\
y'&=-\sin\theta \; x+\cos\theta \; y
\end{align*}\quad\quad\large{\mathbf{(a)}}$$

##\small{\texttt{Can these (the above) be used to derive the (familiar) unit vectors using polar coordinates}}## :


1726582890040.png
$$\boxed{\begin{align*}\hat{\rho}&=\cos\theta \;\hat{i}+\sin\theta \;{\hat j}\\
\hat{\phi}&=-\sin\theta \; \hat i+\cos\theta \; \hat j
\end{align*}}\quad\quad\large{\mathbf{(b)}}$$ I ask because the equations look similar. However, as I show in my workings below, it is far from straightforward. Their (actual) derivation is quite different and doesn't use the rotated co-ordinates shown in ##\mathbf{(a)}## above.



Discussion : The way to go from ##\text{Fig. (2)}\rightarrow\text{Fig. (1)}## is to let ##\text{A}'\rightarrow\text{P}##. That would make ##y'=0\Rightarrow x\sin\theta=y\cos\theta## from ##\mathbf{(a)}## above. But this doesn't lead me anywhere towards deriving ##\mathbf{(b)}##.?

Can I use the equations of ##\mathbf{(a)}## to write ##x'\hat{i}'=\cos\theta x\hat i+\sin\theta y\hat j?## If so, then dividing throughout by ##x'##, we get : ##\hat{i}'=\frac{x}{x'}\cos\theta\hat i+\frac{y}{x'}\sin\theta \hat j##. This would imply ##\frac{x}{x'}=1=\frac{y}{x'}## which is clearly not true.

Request : A hint as to how to derive ##\mathbf{(b)}## from ##\mathbf{(a)}##.
 
Mathematics news on Phys.org
In Fig.1 choose ##\theta## so that P is on x' axis then x',y' are ##\hat{\rho}##, ##\hat{\phi}##, with renaming ##\theta## with ##\phi##.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
568
  • · Replies 1 ·
Replies
1
Views
887
  • · Replies 33 ·
2
Replies
33
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K