Orion1
- 961
- 3
My first attempt to integrate the Adiabatic constant and Adiabatic index with degenerate Fermi pressure.
Adiabatic constant:
K = P V^{\gamma}
Degenerate Fermi pressure:
P = - \frac{dE}{dV}
Degenerate Fermi energy:
E_f = \frac{\pi^3 \hbar^2}{10 m_n} \left( \frac{3 N}{\pi} \right)^{\frac{5}{3}} \frac{1}{V^{\frac{2}{3}}}
Adiabatic constant:
K = \left( - \frac{dE}{dV} \right) V^{\gamma} = - \frac{\pi^3 \hbar^2}{10 m_n} \left( \frac{3 N}{\pi} \right)^{\frac{5}{3}} \left( \frac{V^{-\frac{2}{3}}}{dV} \right) V^{\gamma}
Differentiation identity:
\frac{V^{-n}}{dV} = -n V^{-n - 1} = \left(-\frac{2}{3} \right) V^{-\frac{2}{3} - \frac{3}{3}} = \left(- \frac{2}{3} \right) V^{-\frac{5}{3}}
Integration by differentiation substitution:
K = - \left( - \frac{2}{3} \right) \frac{\pi^3 \hbar^2}{10 m_n} \left( \frac{3 N}{\pi} \right)^{\frac{5}{3}} \frac{V^{\gamma}}{V^{\frac{5}{3}}} = \left( \frac{2 \cdot 3 \cdot 3^{\frac{2}{3}}}{30} \right) \frac{\pi^{ \left( \frac{9}{3} - \frac{5}{3} \right)} \hbar^2}{m_n} \left( \frac{N}{V} \right)^{\frac{5}{3}} V^{\gamma} = \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^2}{5 m_n} \left( \frac{N}{V} \right)^{\frac{5}{3}} V^{\gamma}
Number density:
n(r) = \frac{N(r)}{V(r)} = \frac{\rho(r)}{m_n}
Adiabatic volume:
V^{\gamma} = \left( \frac{m_n}{\rho(r)} \right)^{\gamma}
K = \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^2}{5 m_n} \left( \frac{\rho(r)}{m_n} \right)^{\frac{5}{3}} \left( \frac{m_n}{\rho(r)} \right)^{\gamma} = \left( \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^2}{5} \right) m_n^{\gamma - \frac{5}{3} + \frac{3}{3}} \rho(r)^{\frac{5}{3} - \gamma} = \left( \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^2}{5} \right) m_n^{\gamma - \frac{8}{3}} \rho(r)^{\frac{5}{3} - \gamma}
Degenerate adiabatic constant with adiabatic index:
\boxed{K = \left( \frac{3^{\frac{2}{3}} \pi^{\frac{4}{3}} \hbar^2}{5} \right) m_n^{\gamma - \frac{8}{3}} \rho(r)^{\frac{5}{3} - \gamma}}
Is this equation solution correct?
Standard SI derivation:
K = \frac{dE^2 \cdot dt^2}{dm \cdot dL^5} = \frac{dF^2 \cdot dL^2 \cdot dt^2}{dm \cdot dL^5} = \frac{dF^2 \cdot dt^2}{dm \cdot dL^3} = \frac{dF}{dL^2}
\frac{dF}{dL^2} = \frac{dF^2 \cdot dt^2}{dm \cdot dL^3}
Newtons second law:
\boxed{dF = \frac{dm \cdot dL}{dt^2}}
Adiabatic constant SI units:
\boxed{K = \frac{dF}{dL^2}}
The SI adiabat is a unit of pressure:
1 \; \text{adiabat} = \frac{1 \; \text{Newton}}{1 \; \text{meter}^2}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Force"
http://en.wikipedia.org/wiki/Entropy"
http://en.wikipedia.org/wiki/Fermi_energy"
http://en.wikipedia.org/wiki/Heat_capacity_ratio"
http://en.wikipedia.org/wiki/Degenerate_matter"
http://www.sfu.ca/~boal/385lecs/385lec18.pdf"
http://www.sfu.ca/~boal/385lecs/385lec19.pdf"
Last edited by a moderator: