Arjan82
- 624
- 619
Martin Jediny said:3/ At a flow rate of Qv , at a hydrostatic head of 2 * h1 , can I draw an electrical power of 2 * P1 ?
I think your reasoning is that the difference in density causes a larger difference in pressure if you increase the height. So (rho_hot*g*h1 - rho_cold*g*h1) < (rho_hot*g*2*h1 - rho_cold*g*2*h1), which on itself is true of course.
The thing is that for equal P0 the temperature and therefore the density of the fluid is higher at the hot side if you increase the height to 2*h1. This is because the moment you increase the pressure difference and therefore the flowrate, you decrease the temperature at equal P0. This means the driving force is lower and you do not get exactly 2 times the pressure difference.
But if you have a turbine this of course does not have to be this way. For the first case with h1, you can add a turbine that causes the flowrate to be Qv, but for the 2*h1 case you can increase the turbine size to still get the same Qv. In that case you do indeed get a pressure difference that is twice as large. This would indeed mean that P1 can increase by almost a factor of two, almost, because the plumbing is now longer and you therefore have more friction.
But what also plays a role is that now the pressure difference between the locations where you add P0 and retract Pcool is also twice as high. This means that P0-Pcool is higher and the *net* amount of energy you put in is higher. So then surely you can increase P1 as well.
What needs to be clear is that the amount of energy that you are adding to the system is P0-Pcool, not P0. So with 2*h1 you also input more power.