I Topological question from Ashcroft-Mermin

hagopbul
Messages
397
Reaction score
45
TL;DR Summary
about chapter 2
Hello :

doing some reading in physics and some of it is in solid state physics , in Ashcroft- mermin book chapter 2 page 33 you read

" Thus if our metal is one dimensional we would simply replace the line from 0 to L to which the electron were confined by a circle of circumference L. In three dimensions the geometrical embodiment of the boundary condition , in which three pairs of opposite faces on the cube are joint , becomes topologically impossible to construct in three dimensional space "

the above is not very clear to me could some one provide references to above paragraph or a short explanation

Best Regards
HB
 
Physics news on Phys.org
I believe they are talking about "periodic" boundary conditions. In 1D it is easy to picture in real space as described. For 3D periodic boundary conditions no such real structure should be contemplated. The construct however still works and gives the correct density of states. Just don't try to picture it in your head, you will get agita.
 
  • Like
Likes bsmile
It is like:
two pairs of opposite sides on the square are joint , becomes topologically impossible to construct in two dimensional space
because that is topologically a torus, which can be constructed in 3D but not 2D.
 
could you prove it is tours ? it is 3cubes why tours not hexagon or other 3d object ?
 
hagopbul said:
could you prove it is tours
No, I can't even prove the 2D case.
 
hagopbul said:
Summary:: about chapter 2

" Thus if our metal is one dimensional we would simply replace the line from 0 to L to which the electron were confined by a circle of circumference L. In three dimensions the geometrical embodiment of the boundary condition , in which three pairs of opposite faces on the cube are joint , becomes topologically impossible to construct in three dimensional space. Nevertheless the analytic form of the boundary condition is easily generalized "
I have added the next line from Ashcroft and Mermin. Your question is not salient to the physics of Born-von Karman boundary conditions. Not to worry.
 
  • Like
Likes hagopbul and Keith_McClary
Joining opposite faces of a cube produces a 3-torus, a perfectly well defined topology. The limitation is simply that it cannot be represented (embedded) in 3-dimensional Euclidean space. However, it is easily embedded in a higher dimensional Euclidean space. This is similar to the situation of a Klein bottle. Trying to represent it 3-space requires self intersection, which is not feature of the actual Klein bottle (which can be embedded with no problems in 4-space).

Also, note that something as simple as 3-sphere cannot be embedded in Euclidean 3-space, so there is no problem here other than that our intuitions are guided by Euclidean 3-space.
 
Last edited:
Back
Top