Torque about an accelerating point

AI Thread Summary
The discussion centers on analyzing torque and angular acceleration in a pulley system, focusing on the implications of using different points for torque calculations. It highlights that when considering a point not at the mass center, one must account for non-inertial effects, leading to different moments of inertia and angular accelerations. The participants debate the correctness of torque equations derived from various reference points, emphasizing that the mass center remains the key reference for angular acceleration. The conversation also touches on the introduction of fictitious forces when analyzing torque from non-inertial frames. Understanding these principles is crucial for accurately modeling the dynamics of the system.
xkcda
Messages
7
Reaction score
0
Screenshot from 2023-05-06 23-47-56.png

The total force acting on the pulley is zero so:
F=mg+T1+T2 (1)Analyzing the torque and angular acceleration about the actual axis of rotation, the axle of the pulley, gives:
τnet=T1R−T2R=Iα (2)If we analyze about point P, the right edge of the pulley where T1 is applied, we get:
τnet=(F−mg)R−T2×2R=(I+mR2)α WRONG(3)Using Equation 1 to eliminate F−mg from Equation 3 gives:
τnet=T1R−T2R=(I+mR2)α WRONG(4)The net torque in Equations 2 and 4 is the same, but the moments of inertia are different so the angular accelerations are also different. Note that if we think of point P as attached to the right-hand string, if T1 ≠ T2 then it is accelerating.My question is if we think P as point fixed in space and not attached to to the right-hand string, then what will be the equation of torque about point P?

In the case of instantaneous axis of rotation, we say that the center of rotation is a point in space and does not undergo radial acceleration. So we think of it as an inertial frame of reference. So can't we analyze the torque about point P thinking that it not subject to any kind of acceleration.In that case we should get the actual torque about point P.
 
Physics news on Phys.org
Welcome, @xkcda !

The fact that I and m are given, suggests that T1 and T2 are not equal and that there is a unique angular acceleration of the pulley.

I believe that equation 4 is incorrect because the moment of inertia is incorrect.
Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#cmi
 
Last edited:
Is there a question to be answered or a task to be performed that relates to the diagram? This is not a forum for guessing games.
 
  • Like
Likes berkeman and erobz
xkcda said:

Torque about an accelerating point​

τnet=(F−mg)R−T2×2R=(I+mR2)α
Your title is the clue. If you take torques about an accelerating point which is not the mass centre then you need to consider the consequences of using a non-inertial frame.
As you noted, the mass centre is not accelerating here, so although you took torques about some other point the angular acceleration is still about the mass centre: I, not ##I+mR^2##.
Or, if you take a non-rotating frame moving with point P of the wheel as your reference frame, making P stationary, then you must introduce a virtual force to compensate for your non-inertial frame. On, the wheel, that will be ##mR\alpha##, upwards.
##\tau_{net}=(F−mg)R−T_2\cdot 2R+mR^2\alpha=(I+mR^2)\alpha##.
If you take a rotating frame moving with P, the reasoning may be different again, but will lead to the same equation.
 
haruspex said:
Your title is the clue. If you take torques about an accelerating point which is not the mass centre then you need to consider the consequences of using a non-inertial frame.
As you noted, the mass centre is not accelerating here, so although you took torques about some other point the angular acceleration is still about the mass centre: I, not ##I+mR^2##.
Or, if you take a non-rotating frame moving with point P of the wheel as your reference frame, making P stationary, then you must introduce a virtual force to compensate for your non-inertial frame. On, the wheel, that will be ##mR\alpha##, upwards.
##\tau_{net}=(F−mg)R−T_2\cdot 2R+mR^2\alpha=(I+mR^2)\alpha##.
If you take a rotating frame moving with P, the reasoning may be different again, but will lead to the same equation.
Can you describe me the details about that pseudo force please?Did you apply ##mR\alpha## along P or along the center of mass?
 
Last edited:
xkcda said:
Can you describe me the details about that pseudo force please?Did you apply ##mR\alpha## along P or along the center of mass?
The "inertial force" is taken to act on each element of mass directly, in proportion to its mass. So here it would be taken to act on the mass centre.
https://en.wikipedia.org/wiki/Fictitious_force
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top