Total force that a fluid exerts on a cylinder

AI Thread Summary
The discussion focuses on calculating the total force exerted by a fluid on a cylinder, with a calculated cylinder density of 5479 kg/m³. The user presents a detailed formula involving parameters such as angular velocity, radius, and fluid viscosities to derive a force of 50.11 N. There is confusion regarding the distinction between total force and torque, with suggestions that the total force should account for buoyancy. Additionally, the impact of neglecting friction at the base is debated, as it affects the velocity gradient. The conversation highlights the complexities of fluid dynamics calculations related to cylindrical objects.
Guillem_dlc
Messages
188
Reaction score
17
Homework Statement
A cylinder of diameter ##d=12,0\, \textrm{cm}## and height ##L=1,1\, \textrm{m}## is immersed floating at the interface between mercury (##\rho_{hg}=13580,0\, \textrm{kg}/\textrm{m}^3## and ##\mu_{hg}=0,0015\, \textrm{Pa}\cdot \textrm{s}##) and liquid paraffin (##\rho_{pr}=850,0\, \textrm{kg}/\textrm{m}^3## and ##\mu_{pr}=0,2\, \textrm{Pa}\cdot \textrm{s}##) within a glass tube of diameter ##D=12,2\, \textrm{cm}##. The cylinder is at ##c=0,2\, \textrm{cm}## from the bottom of the tube, the part immersed in mercury has a length of ##b=40,0\, \textrm{cm}## and the part immersed in liquid paraffin has a length of ##70,0\, \textrm{cm}##, as shown in the figure.

The cylinder is rotated by ##100,0 \, \textrm{rpm}##. Neglecting the friction at the base of the cylinder and the tube, determine the total force, in absolute value, that the fluid exerts on the cylinder, at ##\textrm{N}##.
Relevant Equations
##F=\tau A##
Figure:
508922CF-69E6-4502-9C76-4AA5FE2E244D.jpeg


I have calculated the density of the cylinder: ##5479,0\, \textrm{kg}/\textrm{m}^3##.

Attempt at a Solution:
$$d=0,12,\,\, L=1,1,\,\, D=0,122,\,\, e=0,002,\,\, c=0,02,\,\, b=0,4,\,\, a=0,7$$
$$\omega =100\, \textrm{rpm}=10,472\, \textrm{rad}/\textrm{s}\quad e=0,122-0,12=0,002$$
We know that: ##F=\tau A=\mu \dfrac{\omega r}{e}\cdot A\rightarrow##
We have two ##\mu##'s and two different areas:
  • Hg ##\rightarrow A=\pi r^2+2\pi r\cdot b##
  • Pr ##\rightarrow A=\pi r^2+2\pi ra##
$$\rightarrow F=\dfrac{\omega r}{e}(\pi r^2+2\pi rb+\pi r^2+2\pi ra)(\mu_{Hg}+\mu_{Pr})=$$
$$=\dfrac{\omega r}{e}(2\pi r^2+2\pi r(b+a))(\mu_{Hg}+\mu_{Pr})=\dfrac{\omega 2\pi r^2}{e}(1+b+a)(\mu_{Hg}+\mu_{Pr})$$
$$=50,11\, \textrm{N}$$
Here I don't know when I should use the integral and when I shouldn't. Would you do it like this?
 
Physics news on Phys.org
I've already got this one! Thanks
 
It says to neglect the friction at the base. If you don't neglect it, you have to consider that the velocity gradient varies across it.
Doesn't seem right that it asks for the total force. The total force would be the buoyancy. What you have calculated appears to be a torque. Maybe it’s the translation.
 
  • Like
Likes Guillem_dlc and Lnewqban
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top