Transforming Operators with Matrix P

  • Thread starter Thread starter Qubix
  • Start date Start date
  • Tags Tags
    Matrix Operators
Click For Summary
The discussion centers on transforming operators between two bases, (a,b) and (a',b'), using a transformation matrix P. The correct formula for changing an operator A to the new basis is A' = P^T * A * P, with the condition that P is the change of basis matrix. The unitary transformation between the bases is confirmed as U = 1/sqrt(2) * [[1, 1], [1, -1]], leading to A' = UAU^(-1). It is noted that in this case, U is both the transpose and the inverse, indicating a special property of the transformation. The discussion emphasizes the importance of understanding when to use the transpose versus the inverse in transformations.
Qubix
Messages
82
Reaction score
1
I have two possible bases (a,b) and (a',b'). If I also have the transformation matrix P, such that
P(a,b)=(a',b'), am I correct in assuming that I can change an operator A, from the (a,b) basis to the (a',b') basis by applying

A' = P_transposed * A * P ?
 
Physics news on Phys.org
Since ##(a',b')## is a basis we can write ##a = c_1a' + c_2b'## for some scalars ##c_1, c_2##.
Similarly, ##b = d_1a' + d_2b'##. The the change of basis matrix, ##P##, from ##(a,b)## to ##(a', b')## is given by:

##P = \left( \begin{array}{cc}
c_1 & d_1 \\
c_2 & d_2 \\ \end{array} \right) ##.

Then ## A' = PAP^{-1} ##.

There are times when you can get away with using the transpose instead of the inverse, but that is only when the transpose is actually equal to the inverse. This is a very special case.
 
So considering I have two bases (a,b) and (a', b'), with

a' = 1/sqr(2) ( a + b)
b' = 1/sqr(2) (a - b)

am I correct in saying that the unitary transformation between them is

U = 1/sqr(2) ## \left( \begin{array}{cc}
1 & 1 \\
1 & -1 \\ \end{array} \right) ##. ?

and then

Then ## A' = UAU^{-1} ##.
 
Qubix said:
So considering I have two bases (a,b) and (a', b'), with

a' = 1/sqr(2) ( a + b)
b' = 1/sqr(2) (a - b)

am I correct in saying that the unitary transformation between them is

U = 1/sqr(2) ## \left( \begin{array}{cc}
1 & 1 \\
1 & -1 \\ \end{array} \right) ##. ?

and then

Then ## A' = UAU^{-1} ##.

That looks great. In this case, not only is ##U^T = U^{-1}##. But you have that both of those are ##U## itself.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K