Please give us a thesis title or other indication so that we understand something about the objective.
In any case this problem seems an elementary and intuitive preliminary to the analysis of this d.e.
I am presuming the definition of 'trapping region' is that of Wikipedia: "In
applied mathematics, a
trapping region of a
dynamical system is a region such that every trajectory that starts within the trapping region will move to the region's interior and remain there as the system evolves."
Something you'd so obviously look for I wonder it needs to be exalted to status of a 'concept' with its definition. It is related to other concepts such as 'Lyapunov function' which describes essentially an infinite nested series of trapping regions (mathematicians excuse my uncouthness). A gold standard of global stability which it may or may not be possible to find.
If it's for a thesis you surely need to note what's happening qualitatively over the whole plane, even if only one part is of particular interest.
So, sketch the u (say horizontal) and v axes and the isoclines. This divides the plane into several different regions. Inside each region draw a horizontal arrow pointing in the direction of increase of u according to the d.e. (I.e. sign of u'). You'll have the direction every point is evolving - to within 180°. Then do the same with vertical al arrows for v evolution direction, then together it's defined to within 90°. For good measure along each isocline do a series of little horizontal or vertical arrows - those are
exactly the direction of evolutions at points on the isoclines. (You can already do some sketch of solutions, especially if you take into account magnitude indications from the equations. And I suggested do an (x + y)' line - in what directions (to within 180°) do points either side of this line evolve? And on it? However, the things before parentheses are the usual minimum.)
To me, the definition quoted means there can be and are here an infinite number of trapping regions. The u = 0 line creates three such regions - the line and left and right half planes. At u = 0, u' = 0 and the point can never leave the line. To the left and right it can never cross the line. The upper quadrants are also trapping regions aren't they? And if I draw a horizontal line from 0 to - ∞ in the lower left quadrant, everything above it is a trapping region. But not if I do that in the upper quadrant according to the definition. Can you see a subregion of the upper quadrant that is a trapping region? Overall you can find an infinite number of curves between the limits mentioned that define (infinite) trapping regions. You can even define an infinite number of discontinuous curves that will delimit trapping regions.
Maybe you are working to a different definition or we are at cross purposes, as it seems strange someone ready for a math thesis needs me to explain curve sketching. We'd like to see your plots that you mentioned.