MHB Trig Expression simplification

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Expression Trig
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
What identity I need to use for simplifying this trig expression into one expression?$cos(3x)+4hcos(x)$ where h is a constant.

Thank you for your help.

Can you explain, too?
 
Last edited:
Mathematics news on Phys.org
To simplify an expression that contains two terms means we need to combine these two terms to become one single term, i.e. by factoring out the common factor.

In our case ($\cos3x+4h \cos x$), we need to express $\cos 3x$ in terms of $\cos x$ since the second term has a $\cos x$ in it.

By using the triple-angle formula for $ \cos 3x$, where $ \cos 3x=4\cos^3x-3 \cos x$, we can simplify the original expression as follows:

$\displaystyle \cos3x+4h \cos x =(4\cos^3x-3 \cos x)+4h \cos x=\cos x(4\cos^2x-3+4h)$
 
I wished to use sum-product identity.
 
With differing coefficients on the cosine terms, I don't see how you can use a sum-to-product identity.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top