MHB Trig. Indefinite Integral

Click For Summary
The discussion focuses on evaluating the integral of the expression involving trigonometric functions, specifically $\int\sqrt\frac{1+\tan x}{\csc^2 x+\sqrt{\sec x}}dx$. The original poster attempted to simplify the integral using trigonometric identities but found no standard substitution that worked. Another participant suggests that the integral might be expressible in terms of elementary functions and mentions the Risch Algorithm as a method to determine if a function has an elementary antiderivative. The conversation highlights the challenges in solving complex integrals and the potential for advanced mathematical tools to assist in the evaluation. Overall, the integral remains unresolved, with participants seeking further insights.
juantheron
Messages
243
Reaction score
1
Evaluation of $\displaystyle \int\sqrt\frac{1+\tan x}{\csc^2 x+\sqrt{\sec x}}dx$

I have Tried The Given Integral Using $\displaystyle \tan x = \frac{2\tan \frac{x}{2}}{1-\tan^2 \frac{x}{2}}$ and $\displaystyle \cos x = \frac{1-\tan^2 \frac{x}{2}}{1-\tan^2 \frac{x}{2}}$ and $\displaystyle \sin x = \frac{2\tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}$

but Could not find anything in standard Substution form

Help me

Thanks
 
Physics news on Phys.org
jacks said:
Evaluation of $\displaystyle \int\sqrt\frac{1+\tan x}{\csc^2 x+\sqrt{\sec x}}dx$

I have Tried The Given Integral Using $\displaystyle \tan x = \frac{2\tan \frac{x}{2}}{1-\tan^2 \frac{x}{2}}$ and $\displaystyle \cos x = \frac{1-\tan^2 \frac{x}{2}}{1-\tan^2 \frac{x}{2}}$ and $\displaystyle \sin x = \frac{2\tan \frac{x}{2}}{1+\tan^2 \frac{x}{2}}$

but Could not find anything in standard Substution form

Help me

Thanks

Hi jacks, :)

Just out of curiosity where did you found this integral? Just a guess but this integral might be expressed through elementary functions. I am not quite sure, but as far as I know one can use the Risch Algorithm to determine whether a function has an elementary antiderivative.

[graph]yi8y5ym7yx[/graph]
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K