Trig Manipulations I'm Not Getting

Click For Summary
SUMMARY

The discussion centers on the manipulation of the equation 2\cot\left(\frac{\theta}{2}\right) = \cot\left(\frac{k_{1}}{2}\right) - \cot\left(\frac{k_{2}}{2}\right) with specific definitions for k_{1}, k_{2}, and \theta. The user attempts to derive a new equation \cos\left(\frac{K}{2}\right)\sinh(Nk)=\sinh[(N-1)k]+\cos[\pi(I_{2}-I_{1})]\sinh(k) using trigonometric identities. Despite simplifications, the user expresses uncertainty about reaching the desired final form and receives feedback suggesting potential errors in the original problem statement.

PREREQUISITES
  • Understanding of trigonometric identities, specifically cotangent and sine functions.
  • Familiarity with hyperbolic functions, particularly sinh and cosh.
  • Knowledge of complex numbers and their representation in equations.
  • Basic skills in algebraic manipulation of equations.
NEXT STEPS
  • Review the derivation of trigonometric identities, focusing on cotangent and hyperbolic functions.
  • Study the properties of complex numbers in trigonometric contexts.
  • Learn about the implications of dropping terms in equations, particularly in relation to \sin(\pi(I_{2}-I_{1})).
  • Explore common errors in mathematical problem statements and how to verify their correctness.
USEFUL FOR

Mathematicians, physics students, and anyone involved in advanced trigonometric manipulations or complex analysis will benefit from this discussion.

thatboi
Messages
130
Reaction score
20
Hi all,
I am starting with the following equation: ##2\cot\left(\frac{\theta}{2}\right) = \cot\left(\frac{k_{1}}{2}\right) - \cot\left(\frac{k_{2}}{2}\right)##
with the following definitions: ##k_{1} = \frac{K}{2} + ik, k_{2} = \frac{K}{2}-ik, \theta = \pi(I_{2}-I_{1}) + iNk##, where ##k,K,N\in\mathbb{R}## and ##I_{2},I_{1}\in\mathbb{Z}##. I wish to plug these definitions into the above equation and get the new equation: ##\cos\left(\frac{K}{2}\right)\sinh(Nk)=\sinh[(N-1)k]+\cos[\pi(I_{2}-I_{1})]\sinh(k)##. I have done the following (first use the identity ##\cot\frac{\theta}{2} = \frac{1+\cos\theta}{\sin\theta}##):
\begin{equation}
\begin{split}
&2\frac{1+\cos\theta}{\sin\theta} = \frac{1+\cos k_{1}}{\sin k_{1}}-\frac{1+\cos k_{2}}{\sin k_{2}} \\
&\rightarrow 2\frac{1+\cos(\pi(I_{2}-I_{1}))\cos(iNk)-\sin(\pi(I_{2}-I_{1}))\sin(iNk)}{\sin(\pi(I_{2}-I_{1}))\cos(iNk)+\sin(iNk)\cos(\pi(I_{2}-I_{1}))} = \frac{1+\cos\frac{K}{2}\cos(ik)-\sin\frac{K}{2}\sin(ik)}{\sin\frac{K}{2}\cos(ik)+\cos\frac{K}{2}\sin(ik)}-\frac{1+\cos\frac{K}{2}\cos(ik)+\sin\frac{K}{2}\sin(ik)}{\sin\frac{K}{2}\cos(ik)-\cos\frac{K}{2}\sin(ik)}\\
&\rightarrow -2i\frac{1+\cos(\pi(I_{2}-I_{1}))\cosh(Nk)}{\sinh(Nk)\cos(\pi(I_{2}-I_{1}))} = \frac{2i\sinh(k)}{\cos\left(\frac{K}{2}\right)-\cosh(k)}
\end{split}
\end{equation}
where I dropped terms with ##\sin(\pi(I_{2}-I_{1}))## since they would evaluate to 0. While this is a lot more simplified I still don't know how to get to the final form of equation I want or if I made an error somewhere. Any advice appreciated!
 
Mathematics news on Phys.org
The formula that you start with in your first line looks very unrealistic, when following the definitions you give for ## \theta ## and the various k's. It looks to me like the original problem statement may contain an error or two.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K