MHB Trigonometric inequality: sin (1/(n+1934))<1/1994

AI Thread Summary
The discussion focuses on finding the smallest natural number \( n \) such that \( \sin \left(\frac{1}{n+1934}\right) < \frac{1}{1994} \). It is established that for \( 0 < x < 1 \), \( \sin(x) < x \), leading to the conclusion that \( n = 60 \) satisfies the inequality. Testing \( n = 59 \) reveals that \( \sin\left(\frac{1}{1993}\right) \) is greater than \( \frac{1}{1994} \). Since \( \sin\left(\frac{1}{n+1934}\right) \) decreases with increasing \( n \), the smallest \( n \) that meets the condition is confirmed to be 60. Thus, the solution to the inequality is \( n = 60 \).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the smallest natural number $n$ for which $\sin \left(\dfrac{1}{n+1934}\right)<\dfrac{1}{1994}$.
 
Mathematics news on Phys.org
As $\sin x<x$ for all $x>0$ – in particular $\sin\left(\dfrac1{1994}\right)<\dfrac1{1994}$ – it suffices to show that $\sin\left(\dfrac1{1993}\right)>\dfrac1{1994}$.

By Taylor’s theorem, $\sin x=x-\dfrac{x^2}2\sin\xi$ for some $0<\xi<x$ (using the Lagrange form of the remainder). Thus:

$\begin{array}{rcl}\sin x &=& x-\dfrac{x^2}2\sin{\xi} \\\\ {} &>&x-\dfrac{x^2}2\xi \\\\ {} &>& x-\dfrac{x^3}2.\end{array}$

Hence $\sin\left(\dfrac1{1993}\right)>\dfrac1{1993}-\dfrac{\left(\frac1{1993}\right)^3}2 = \dfrac{7944097}{15832587314}>\dfrac1{1994}$, as required. So the smallest natural number is $\boxed{n=60}$.
 
Code:
    for (unsigned int n = 0; n <= 60; n++)
        if ((sin(1/(n + 1934.0))) < 1/1994.0)
            std::cout << n;

(Bigsmile)
 
anemone said:
Find the smallest natural number $n$ for which $\sin \left(\dfrac{1}{n+1934}\right)<\dfrac{1}{1994}$.
[sp]
For $0<x<1$, we have $\sin(x)<x$. This shows that the inequality is satisfied for $n=60$. Taking $n=59$, we find:
$$
\sin\left(\frac{1}{1993}\right)\approx 0.00050176> \frac{1}{1994}\approx 0.00050150
$$
As $\sin\left(\dfrac{1}{n+1934}\right)$ is a decreasing function of $n$ for $n>0$, this shows that the smallest $n$ that satifies the inequality is $60$.
[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top