MHB Trigonometric Sum Challenge Σtan^(-1)(1/(n^2+n+1)=π/2

AI Thread Summary
The discussion focuses on proving the identity involving the arctangent function, specifically that tan^(-1)(k) equals the sum of arctangents from n=0 to k-1 of the expression 1/(n^2+n+1) for k ≥ 1. The initial case for k=1 is established as both sides equal tan^(-1)(1). The proof proceeds by induction, assuming the identity holds for k=j and then demonstrating it for k=j+1. The conclusion drawn from this proof is that the infinite sum of arctangents leads to the result that the sum equals π/2. The discussion highlights the elegance of the proof and the contributions of participants in solving the challenge.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show that

\[\tan^{-1}(k) = \sum_{n=0}^{k-1}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ),\;\;\;\;\; k \geq 1,\]

- and deduce that

\[ \sum_{n=0}^{\infty}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ) = \frac{\pi}{2}.\]
 
Mathematics news on Phys.org
Looks like an obvious candidate for induction on ki. When k= 1, both sided are tan^{-1}(1).

Assume that, for k= j, tan^{-1}(j)= \sum_{n=0}^{k-1} tan^{-1}\left(\frac{1}{n^2+ n+ 1}\right). Use that to show that
tan^{-1}(j+1)= \sum_{n=0}^{j} tan^{-1}\left(\frac{1}{n^2+ n+ 1}\right).
 
My solution

We have $n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}$
Or $\frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}$
Using $\tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}$
We get $\tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)- \tan ^{-1}n$
Adding from 0 to k-1 we get as telescopic sum
Hence $\sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}k- \tan ^{-1}0 = \tan ^{-1}k$
Taking limit as $k = \infty$
$\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}\infty= \frac{\pi}{2}$
 
kaliprasad said:
My solution

We have $n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}$
Or $\frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}$
Using $\tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}$
We get $\tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)- \tan ^{-1}n$
Adding from 0 to k-1 we get as telescopic sum
Hence $\sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}k- \tan ^{-1}0 = \tan ^{-1}k$
Taking limit as $k = \infty$
$\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}\infty= \frac{\pi}{2}$

You´re truly a master, kaliprasad, thankyou very much for your nice solution!(Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top