MHB Trigonometric Sum Challenge Σtan^(-1)(1/(n^2+n+1)=π/2

Click For Summary
The discussion focuses on proving the identity involving the arctangent function, specifically that tan^(-1)(k) equals the sum of arctangents from n=0 to k-1 of the expression 1/(n^2+n+1) for k ≥ 1. The initial case for k=1 is established as both sides equal tan^(-1)(1). The proof proceeds by induction, assuming the identity holds for k=j and then demonstrating it for k=j+1. The conclusion drawn from this proof is that the infinite sum of arctangents leads to the result that the sum equals π/2. The discussion highlights the elegance of the proof and the contributions of participants in solving the challenge.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Show that

\[\tan^{-1}(k) = \sum_{n=0}^{k-1}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ),\;\;\;\;\; k \geq 1,\]

- and deduce that

\[ \sum_{n=0}^{\infty}\tan^{-1} \left ( \frac{1}{n^2+n+1} \right ) = \frac{\pi}{2}.\]
 
Mathematics news on Phys.org
Looks like an obvious candidate for induction on ki. When k= 1, both sided are tan^{-1}(1).

Assume that, for k= j, tan^{-1}(j)= \sum_{n=0}^{k-1} tan^{-1}\left(\frac{1}{n^2+ n+ 1}\right). Use that to show that
tan^{-1}(j+1)= \sum_{n=0}^{j} tan^{-1}\left(\frac{1}{n^2+ n+ 1}\right).
 
My solution

We have $n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}$
Or $\frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}$
Using $\tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}$
We get $\tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)- \tan ^{-1}n$
Adding from 0 to k-1 we get as telescopic sum
Hence $\sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}k- \tan ^{-1}0 = \tan ^{-1}k$
Taking limit as $k = \infty$
$\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}\infty= \frac{\pi}{2}$
 
kaliprasad said:
My solution

We have $n^2+n+1= 1+n(n+1) = \frac{1+n(n+1)}{(n+1) - n}$
Or $\frac{1}{n^2+n+1} = \frac{(n+1)-n}{1+(n+1)n}$
Using $\tan^{-1}\frac{a-b}{1+ab} = \tan^{-1} a - \tan^{-1}{b}$
We get $\tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}(n+1)- \tan ^{-1}n$
Adding from 0 to k-1 we get as telescopic sum
Hence $\sum_{n=0}^{k-1} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}k- \tan ^{-1}0 = \tan ^{-1}k$
Taking limit as $k = \infty$
$\sum_{n=0}^{\infty} \tan^{-1} \frac{1}{n^2+n+1} = \tan ^{-1}\infty= \frac{\pi}{2}$

You´re truly a master, kaliprasad, thankyou very much for your nice solution!(Yes)
 

Similar threads

Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K