Triple Integral for Divergence Theorem

Click For Summary
SUMMARY

The discussion focuses on calculating the flux of the vector field F(x) = across the hemisphere defined by x^2 + y^2 + z^2 = 4, above the plane z = 1, using both the Divergence Theorem and flux integrals. The divergence of the field is established as 3, leading to a divergence integral that results in 5π. The flux integral, however, yields a different result, prompting a discussion on the correct limits of integration and the necessity of subtracting the volume of a cone from the hemisphere. The final calculations reveal discrepancies between the two methods, highlighting the importance of precise integration limits in spherical coordinates.

PREREQUISITES
  • Understanding of the Divergence Theorem
  • Proficiency in spherical coordinates
  • Knowledge of vector calculus and flux integrals
  • Familiarity with triple integrals and their applications
NEXT STEPS
  • Study the application of the Divergence Theorem in vector fields
  • Learn about spherical coordinate transformations in triple integrals
  • Explore methods for setting integration limits in flux integrals
  • Investigate common pitfalls in calculating flux across surfaces
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with vector fields and need to understand the application of the Divergence Theorem and flux integrals in three-dimensional space.

checkmatechamp
Messages
23
Reaction score
0

Homework Statement


Find the flux of the field F(x) = <x,y,z> across the hemisphere x^2 + y^2 + z^2 = 4 above the plane z = 1, using both the Divergence Theorem and with flux integrals. (The plane is closing the surface)

Homework Equations



The Attempt at a Solution



Obviously, the divergence is 3, so the tricky part is setting up the integral. If it was above the plane z = 0, it would be easy (matter of fact, you could just use the formula V = (2/3)(pi)(r^3) (since it's only half the sphere)), but it's not.

So what I did was say that since z = (rho)*cos(phi), I tried to figure out what the angle phi would be when z = 1. Substituting that in meant that 1 = 2*cos(phi), which means that cos(phi) = 0.5, which means that phi = pi/3

So my integral is as follows:
rho from 0 to 2
phi from 0 to pi/3
θ from 0 to 2pi

∫∫∫σ2sin(φ)dσdφdθ

Integrating with respect to σ gets me sin(φ)*σ3/3, and punching in my limits for σ gets me sin(φ)*(8/3).

Integrating with respect to φ gets me -cos(φ)*(8/3), and then punching in my limits for φ gets me (8/3)*(-cos(pi/3) - (-cos(0)), which is (8/3)(-0.5-(-1)), which is (0.5)(8/3) = 4/3.

Then integrating with respect to θ gets me (4/3)θ, and then substituting my limits gets me (8/3)*pi.

But then if I'm visualizing it correctly, I'm left with an ice cream cone-shaped object. So to get rid of the bottom of the cone, I substitute 1 in for z:

x^2 + y^2 + 1^2 = 4
x^2 + y^2 = 3
r^2 = 3
So r = sqrt(3)

So then I use cylindrical coordinates to subtract out the cone, using the following integral.
z from 0 to 1
r from 0 to sqrt(3)
θ from 0 to 2pi

∫∫∫rdzdrdθ

Integrating with respect to z gets me rz, and punching in my limits gets me r.

Then integrating with respect to r gets me 0.5r^2, and punching in my limits gets me 1.5.

Then integrating with respect to θ gets me 1.5θ from 0 to 2π, which is 3π.

So then (8/3)π - 3π is (-1/3)π. But if everything is above the x-axis, how can it be negative? (If I multiply by 3 to account for the divergence, that's still -π)

Alright, so doing the flux integral, I have the sphere parametrized as <2sinΦcosθ, 2sinΦsinθ, -2sinΦ>. Taking the cross product of the partials gives me <-4sin2φcosθ, -4sin2Φsinθ, 4sinφcosΦ>

The parametrization of the vector field in spherical coordinates is simply <2sinφcosθ, 2sinφsinθ, 2cosφ>. Taking the dot product of the two gives me -8sinφ(sin2φ-cos2φ), which becomes 8sinφcos(2φ)

Then I have to integrate that over the region in the (φ, θ) domain.

φ goes from 0 to π/3, and θ goes from 0 to 2π

So ∫∫(-8sinφ(sin2φ-cos2φ) dφdθ

Using a trig-sub:

∫∫(-8)(-cos(3φ)/6)+((cosφ)/2))

Integrate with respect to φ first.

-8(-sin(3φ)/18) + -8(sin(φ)/2)

(4/9)(sin(3φ)) - 4sinφ

((4/9)(0) - 2*sqrt(3) - 0) - 0

-2sqrt(3) integrate with respect to φ from 0 to 2π

-4π√3

And then you just take the area of the disk on the bottom.

r goes from 0 to sqrt(3), and θ goes from 0 to pπ

∫∫ r dr dθ

0.5r2 from 0 to sqrt(3) is just 1.5

Then basically multiply by 2π gives 3π

So it's 3π - 4π√3

But I'm getting two different answers for solving the flux integral vs. the divergence integral.
 
Last edited:
Physics news on Phys.org
checkmatechamp said:

Homework Statement


Find the flux of the field F(x) = <x,y,z> across the hemisphere x^2 + y^2 + z^2 = 4 above the plane z = 1, using both the Divergence Theorem and with flux integrals. (The plane is closing the surface)

Homework Equations



The Attempt at a Solution



Obviously, the divergence is 3, so the tricky part is setting up the integral. If it was above the plane z = 0, it would be easy (matter of fact, you could just use the formula V = (2/3)(pi)(r^3) (since it's only half the sphere)), but it's not.

So what I did was say that since z = (rho)*cos(phi), I tried to figure out what the angle phi would be when z = 1. Substituting that in meant that 1 = 2*cos(phi), which means that cos(phi) = 0.5, which means that phi = pi/3

So my integral is as follows:
rho from 0 to 2
phi from 0 to pi/3
θ from 0 to 2pi
Since ##z=1## is ##\rho\cos\phi = 1## or ##\rho = \sec\phi##, why not integrate in the ##\rho## direction from ##\rho## on the plane to ##\rho = 2## instead of 0 to 2? Then you don't have to subtract the cone.

Also, I haven't, and don't intend to, carefully read your post because it's hard to read and follow.
 
LCKurtz said:
Since ##z=1## is ##\rho\cos\phi = 1## or ##\rho = \sec\phi##, why not integrate in the ##\rho## direction from ##\rho## on the plane to ##\rho = 2## instead of 0 to 2? Then you don't have to subtract the cone.

Also, I haven't, and don't intend to, carefully read your post because it's hard to read and follow.

So you mean change the limits as follows?

θ from 0 to 2π
φ from 0 to π/3
ρ from secφ to 2
 
You wish to evaluate:

$$\iint_S \vec F \cdot d \vec S$$

In two ways. Once using the flux integral above and once using the divergence theorem.

In the case of the flux integral:

$$\iint_S \vec F \cdot d \vec S = \iint_S \vec F \cdot \vec n \space dS = \iint_D \vec F(x, y, z(x,y)) \cdot (\vec r_x \times \vec r_y) \space dA$$

Where ##\vec r(x,y) = x \hat i + y \hat j + 1 \hat k## and ##z(x,y) = 1##.

You can obtain the ##xy## limits by looking at the sphere and noticing ##x^2 + y^2 + z^2 = 4 \Rightarrow x^2 + y^2 = 3##. Switching to polar co-ordinates should finish it off.

In the case of the divergence theorem:

$$\iint_S \vec F \cdot d \vec S = \iiint_E \text{div}(\vec F) \space dV = 3 \iiint_E \space dV $$

Where you have already found the divergence. Now the solid region ##E## is bounded by the plane and the hemisphere, so a switch to spherical co-ordinates would finish off the integral nicely.
 
checkmatechamp said:
So you mean change the limits as follows?

θ from 0 to 2π
φ from 0 to π/3
ρ from secφ to 2

Yes. And, for what it's worth, I get ##5\pi## for the triple integral using the divergence of ##3##.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K