- #1
- 46
- 0
Homework Statement
a) Differentiate the following equation with respect to:
1) θ
2) Φ
3) ψ
(Ua - Ub)' * C * r
where:
C is a 3 x 3 rotation matrix:
[ cos θ cos ψ, -cos Φ sin ψ + sin Φ sin θ cos ψ, sin Φ sin ψ + cos Φ sin θ cos ψ]
[ cos θ sin ψ, cos Φ cos ψ + sin Φ sin θ sin ψ, -sin Φ cos ψ + cos Φ sin θ sin ψ]
[ -sin θ, sin Φ cos θ, cos Φ cos θ ]
Ua is a 3x1 column vector:
[Ua_x]
[Ua_y]
[Ua_z]
Ub is a 3x1 column vector:
[Ub_x]
[Ub_y]
[Ub_z]
r is a 3 x 1 column vector:
[r_x]
[r_y]
[r_z]
' means transpose
Show your working out.
Homework Equations
derivative of:
sin x is cos x
cos x is -sin x
The Attempt at a Solution
Let:
θ = theta
Φ = phi
ψ = psi
Expanding:
r_z*((Ua_x - Ub_x)*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)) - (Ua_y - Ub_y)*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta)) + cos(phi)*cos(theta)*(Ua_z - Ub_z)) + r_y*((Ua_y - Ub_y)*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) - (Ua_x - Ub_x)*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta)) + cos(theta)*sin(phi)*(Ua_z - Ub_z)) + r_x*(cos(psi)*cos(theta)*(Ua_x - Ub_x) - sin(theta)*(Ua_z - Ub_z) + cos(theta)*sin(psi)*(Ua_y - Ub_y))
Answer in book:
(Ua - Ub)' * (skew(C * r))
Where skew is the skew symmetric matrix
ie skew (x y z) =
[0 -z y]
[z 0 -x]
[-y x 0]
Last edited: