Triple Integral w/ Respect to x & y Help

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Symbol
Click For Summary
The discussion revolves around interpreting the triple integral expression $$\int \frac{d^{3} x}{y^{3}}$$ and whether it represents the integral of "y" with respect to "x." Participants emphasize the need for additional context, such as bounds and whether "y" is a function of position in three dimensions, to fully understand the expression. The notation ##d^3x## is clarified as shorthand for multiple variables, indicating that there isn't a single variable "x" involved. Without more information, the expression remains ambiguous and cannot be accurately evaluated. Context is essential for meaningful interpretation of the integral.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
 
Physics news on Phys.org
Without the benefit of the context, I would say a cautious "yes". Cautious because ##d^3x## is shorthand for ##dx_1~dx_2~dx_3## so there is no single variable of integration "x".
 
  • Like
Likes topsquark and NODARman
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
any context? bounds ? Complete problem statement ?
 
Is y a function of position in three dimensions?
 
BvU said:
any context? bounds ? Complete problem statement ?
haruspex said:
Is y a function of position in three dimensions?
I found it in a textbook, it's very general "equation".
 
NODARman said:
I found it in a textbook, it's very general "equation".
What you posted is an expression, not an equation. What is the rest of it?
There must be some context or it would be meaningless.
 
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 18 ·
Replies
18
Views
1K
Replies
1
Views
732
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
2K
Replies
7
Views
3K