Triple Integral w/ Respect to x & y Help

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Symbol
AI Thread Summary
The discussion revolves around interpreting the triple integral expression $$\int \frac{d^{3} x}{y^{3}}$$ and whether it represents the integral of "y" with respect to "x." Participants emphasize the need for additional context, such as bounds and whether "y" is a function of position in three dimensions, to fully understand the expression. The notation ##d^3x## is clarified as shorthand for multiple variables, indicating that there isn't a single variable "x" involved. Without more information, the expression remains ambiguous and cannot be accurately evaluated. Context is essential for meaningful interpretation of the integral.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
 
Physics news on Phys.org
Without the benefit of the context, I would say a cautious "yes". Cautious because ##d^3x## is shorthand for ##dx_1~dx_2~dx_3## so there is no single variable of integration "x".
 
  • Like
Likes topsquark and NODARman
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
any context? bounds ? Complete problem statement ?
 
Is y a function of position in three dimensions?
 
BvU said:
any context? bounds ? Complete problem statement ?
haruspex said:
Is y a function of position in three dimensions?
I found it in a textbook, it's very general "equation".
 
NODARman said:
I found it in a textbook, it's very general "equation".
What you posted is an expression, not an equation. What is the rest of it?
There must be some context or it would be meaningless.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top