Triple Integral w/ Respect to x & y Help

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Symbol
AI Thread Summary
The discussion revolves around interpreting the triple integral expression $$\int \frac{d^{3} x}{y^{3}}$$ and whether it represents the integral of "y" with respect to "x." Participants emphasize the need for additional context, such as bounds and whether "y" is a function of position in three dimensions, to fully understand the expression. The notation ##d^3x## is clarified as shorthand for multiple variables, indicating that there isn't a single variable "x" involved. Without more information, the expression remains ambiguous and cannot be accurately evaluated. Context is essential for meaningful interpretation of the integral.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
 
Physics news on Phys.org
Without the benefit of the context, I would say a cautious "yes". Cautious because ##d^3x## is shorthand for ##dx_1~dx_2~dx_3## so there is no single variable of integration "x".
 
  • Like
Likes topsquark and NODARman
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering does this mean the triple integral of "y" with respect to "x"?
$$
\int \frac{d^{3} x}{y^{3}} .
$$
any context? bounds ? Complete problem statement ?
 
Is y a function of position in three dimensions?
 
BvU said:
any context? bounds ? Complete problem statement ?
haruspex said:
Is y a function of position in three dimensions?
I found it in a textbook, it's very general "equation".
 
NODARman said:
I found it in a textbook, it's very general "equation".
What you posted is an expression, not an equation. What is the rest of it?
There must be some context or it would be meaningless.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top