Undergrad Trouble simplifying the Lagrangian

Click For Summary
The discussion focuses on simplifying the Lagrangian for a mechanical system involving variables x, y, and φ. The user presents their calculations for kinetic and potential energy, aiming to match a book's solution while removing time derivatives. They highlight that certain terms can be rewritten as total time derivatives, which can be omitted without affecting the equations of motion. The final simplified Lagrangian is presented, demonstrating a clearer form for analysis. The user expresses gratitude for the assistance received in this process.
p1ndol
Messages
7
Reaction score
3
Hello, I have posted a similar thread on this question before, but I'd like to get some help to simplify the answers I've got so far in order to match the solutions provided. If anyone could help me, I would really appreciate it. Since (c) is quite similar to (b), I'll leave here what I've done on (b).

Taking x and y as provided in the solution, I imagine we should have:

\dot x = -a\gamma\sin(\gamma t) + l\dot \phi \cos(\phi) \dot y = -l\dot \phi\sin(\phi)

Calculating the kinetic energy:

T = \frac {m} {2} (l^2\dot\phi^2\cos(\phi)^2 - 2l\dot\phi\cos(\phi)a\gamma\sin(\gamma t) + a^2\gamma^2\sin(\gamma t)^2+l^2\dot \phi^2\sin(\phi)^2)
T = \frac {m} {2} (l^2\dot\phi^2 - 2l\dot\phi\cos(\phi)a\gamma\sin(\gamma t) + a^2\gamma^2\sin(\gamma t)^2

For the potential energy:

V = -mgy = -mgl\cos(\phi)

So, considering that the Lagrangian is the kinetic minus the potential energy, I am trying to find out a way to get to the answer provided in the book removing time derivatives.
 

Attachments

  • Captura de Tela (66).png
    Captura de Tela (66).png
    28.5 KB · Views: 156
Physics news on Phys.org
As you wrote, the Lagrangian for (b) is\begin{align*}
L = \frac{1}{2}ml^2 \dot{\phi}^2 - ma\gamma l \dot{\phi} \sin{(\gamma t)} \cos{(\phi)} + \frac{1}{2}ma^2 \gamma^2 \sin^2{(\gamma t)} + mgl\cos{(\phi)}
\end{align*}Next, notice that the second term can be re-written as\begin{align*}
-ma\gamma l \dot{\phi} \sin{(\gamma t)} \cos{(\phi)} = ma\gamma^2 l \cos{(\gamma t)} \sin{(\phi)} - \frac{d}{dt} \left( ma\gamma l \sin{(\gamma t)} \sin{(\phi)}\right)
\end{align*}The total time derivative can be omitted in the Lagrangian without changing the equations of motion. Furthermore, the third term ##\frac{1}{2}ma^2 \gamma^2 \sin^2{(\gamma t)}## in the Lagrangian depends only on time, so may also be omitted (i.e. it can be re-written as a total derivative). Therefore\begin{align*}
\tilde{L} = \frac{1}{2}ml^2 \dot{\phi}^2 + ma\gamma^2 l \cos{(\gamma t)} \sin{(\phi)} + mgl\cos{(\phi)}
\end{align*}is a Lagrangian for the system.
 
  • Like
Likes p1ndol and vanhees71
Thanks, it helped a lot!
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K