I Trouble simplifying the Lagrangian

AI Thread Summary
The discussion focuses on simplifying the Lagrangian for a mechanical system involving variables x, y, and φ. The user presents their calculations for kinetic and potential energy, aiming to match a book's solution while removing time derivatives. They highlight that certain terms can be rewritten as total time derivatives, which can be omitted without affecting the equations of motion. The final simplified Lagrangian is presented, demonstrating a clearer form for analysis. The user expresses gratitude for the assistance received in this process.
p1ndol
Messages
7
Reaction score
3
Hello, I have posted a similar thread on this question before, but I'd like to get some help to simplify the answers I've got so far in order to match the solutions provided. If anyone could help me, I would really appreciate it. Since (c) is quite similar to (b), I'll leave here what I've done on (b).

Taking x and y as provided in the solution, I imagine we should have:

\dot x = -a\gamma\sin(\gamma t) + l\dot \phi \cos(\phi) \dot y = -l\dot \phi\sin(\phi)

Calculating the kinetic energy:

T = \frac {m} {2} (l^2\dot\phi^2\cos(\phi)^2 - 2l\dot\phi\cos(\phi)a\gamma\sin(\gamma t) + a^2\gamma^2\sin(\gamma t)^2+l^2\dot \phi^2\sin(\phi)^2)
T = \frac {m} {2} (l^2\dot\phi^2 - 2l\dot\phi\cos(\phi)a\gamma\sin(\gamma t) + a^2\gamma^2\sin(\gamma t)^2

For the potential energy:

V = -mgy = -mgl\cos(\phi)

So, considering that the Lagrangian is the kinetic minus the potential energy, I am trying to find out a way to get to the answer provided in the book removing time derivatives.
 

Attachments

  • Captura de Tela (66).png
    Captura de Tela (66).png
    28.5 KB · Views: 131
Physics news on Phys.org
As you wrote, the Lagrangian for (b) is\begin{align*}
L = \frac{1}{2}ml^2 \dot{\phi}^2 - ma\gamma l \dot{\phi} \sin{(\gamma t)} \cos{(\phi)} + \frac{1}{2}ma^2 \gamma^2 \sin^2{(\gamma t)} + mgl\cos{(\phi)}
\end{align*}Next, notice that the second term can be re-written as\begin{align*}
-ma\gamma l \dot{\phi} \sin{(\gamma t)} \cos{(\phi)} = ma\gamma^2 l \cos{(\gamma t)} \sin{(\phi)} - \frac{d}{dt} \left( ma\gamma l \sin{(\gamma t)} \sin{(\phi)}\right)
\end{align*}The total time derivative can be omitted in the Lagrangian without changing the equations of motion. Furthermore, the third term ##\frac{1}{2}ma^2 \gamma^2 \sin^2{(\gamma t)}## in the Lagrangian depends only on time, so may also be omitted (i.e. it can be re-written as a total derivative). Therefore\begin{align*}
\tilde{L} = \frac{1}{2}ml^2 \dot{\phi}^2 + ma\gamma^2 l \cos{(\gamma t)} \sin{(\phi)} + mgl\cos{(\phi)}
\end{align*}is a Lagrangian for the system.
 
  • Like
Likes p1ndol and vanhees71
Thanks, it helped a lot!
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Back
Top