MHB Troubleshooting (b), (c) & (e): Seeking Assistance

Joe20
Messages
53
Reaction score
1
I have some difficulties answering part (b), (c) and (e).

Help is appreciated.
 

Attachments

  • Picture4.jpg
    Picture4.jpg
    23.6 KB · Views: 90
Mathematics news on Phys.org
(b) If you write out the formula for the dot product, what do you get? Now compare that with the RHS. What can you conclude?

(c) Again, I would write out the formulae for the dot products. What can you conclude?

(e) I would think about this one geometrically. Try drawing a few examples and see what you come up with.
 
Ackbach said:
(b) If you write out the formula for the dot product, what do you get? Now compare that with the RHS. What can you conclude?

(c) Again, I would write out the formulae for the dot products. What can you conclude?

(e) I would think about this one geometrically. Try drawing a few examples and see what you come up with.
Hi Ackbach,

Thanks for the advice. I am not very sure what is meant by thinking it geometrically and drawing a few examples in part (e). Would further advice on this. Thanks.
 
Alexis87 said:
Hi Ackbach,

Thanks for the advice. I am not very sure what is meant by thinking it geometrically and drawing a few examples in part (e). Would further advice on this. Thanks.

Well, here's another hint: $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$. So, comparing $\mathbf{a}+\mathbf{b}$ with $\mathbf{a}+(-\mathbf{b})$ gives you some information about what's going on. Geometrically, how does $\mathbf{b}$ compare with $-\mathbf{b}?$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top