MHB Troubleshooting (b), (c) & (e): Seeking Assistance

Click For Summary
The discussion focuses on troubleshooting parts (b), (c), and (e) of a problem related to the dot product. For part (b), participants are encouraged to write out the dot product formula and compare it with the right-hand side (RHS) to draw conclusions. In part (c), a similar approach is suggested, emphasizing the importance of analyzing the dot product formulas. Part (e) prompts a geometric interpretation, with advice to visualize examples to enhance understanding. The conversation highlights the need for clarity on geometric reasoning and the relationship between vectors and their negatives.
Joe20
Messages
53
Reaction score
1
I have some difficulties answering part (b), (c) and (e).

Help is appreciated.
 

Attachments

  • Picture4.jpg
    Picture4.jpg
    23.6 KB · Views: 98
Mathematics news on Phys.org
(b) If you write out the formula for the dot product, what do you get? Now compare that with the RHS. What can you conclude?

(c) Again, I would write out the formulae for the dot products. What can you conclude?

(e) I would think about this one geometrically. Try drawing a few examples and see what you come up with.
 
Ackbach said:
(b) If you write out the formula for the dot product, what do you get? Now compare that with the RHS. What can you conclude?

(c) Again, I would write out the formulae for the dot products. What can you conclude?

(e) I would think about this one geometrically. Try drawing a few examples and see what you come up with.
Hi Ackbach,

Thanks for the advice. I am not very sure what is meant by thinking it geometrically and drawing a few examples in part (e). Would further advice on this. Thanks.
 
Alexis87 said:
Hi Ackbach,

Thanks for the advice. I am not very sure what is meant by thinking it geometrically and drawing a few examples in part (e). Would further advice on this. Thanks.

Well, here's another hint: $\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})$. So, comparing $\mathbf{a}+\mathbf{b}$ with $\mathbf{a}+(-\mathbf{b})$ gives you some information about what's going on. Geometrically, how does $\mathbf{b}$ compare with $-\mathbf{b}?$
 

Similar threads