Hi, I dunno if this should go in a Math forum or a Programming forums, but y'all here seem quite handy with mathematics, so I'll give it a shot. If this is totally not what y'all are about, just let me know.(adsbygoogle = window.adsbygoogle || []).push({});

I have two computer images... one of them is an "original" image. The other one is a transformed version of the original image... it has been rotated, sheared and translated in a software program. I need to work on the transformed image, but I need the (x-y) coordinates of each corresponding pixel in the original image to finish my calculations.

I know the image was rotated and sheared with a 3x3 Transformation matrix. If I had the matrix, I could derive the second image from the first (or vice-versa using the inverse matrix) myself. But I don't have that. I don't know exactly how much it was rotated, sheared, or translated, so I can't just derive the matrices from a set of known transformations. What I do have is a set of corresponding points (the corners, et al) in each image, and their corresponding (x,y) coordinates. So here's my dilemma:

Using a set of corresponding transformed points ((x,y) -> (x',y'), three or more of them), can I derive the Transformation matrix that was used to turn one image into the other? If I can derive the matrix, I can solve for the original coordinates of all the pixels (all 18-million of 'em) and get the calculations done that I need to do.

Can anyone help? I'm familiar with linear algebra... just not familiar enough to derive this without a whole lotta head scratching. Anything is appreciated!

- Mike

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Trying to derive a transformation Matrix from a set of known points

**Physics Forums | Science Articles, Homework Help, Discussion**